Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 14
181
Views
4
CrossRef citations to date
0
Altmetric
ARTICLES

Suppression of methanogenesis in hydrogen fermentation by intermittent feeding

, &
Pages 1458-1467 | Received 25 Apr 2015, Published online: 01 Sep 2015

References

  • Ohnishi, A.; Bando, Y.; Fujimoto, N.; Suzuki, M. Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora. Int. J. Hydrog. Energy 2010, 35(16), 8544–8553.
  • Hafez, H.; Elbeshbishy, E.; Nakhla, G.; El. Naggar, M.H. Simulating the impact of suppression of methanogenesis in continuous flow biohydrogen reactors. Int. J. Hydrog. Energy 2011, 36(10), 5885–5894.
  • Valdez-Vazquez, I.; Poggi-Varaldo, H.M. Hydrogen production by fermentative consortia. Renew. Sust. Energ. Rev. 2009, 13(5), 1000–1013.
  • Liu, X.; Ren, N.; Song, F.; Yang, C.; Wang, A. Recent advances in fermentative biohydrogen production. Prog. Nat. Sci. 2008, 18(3), 253–258.
  • Lin, C.-Y.; Lay, C.-H.; Sen, B.; Chu, C.-Y.; Kumar, G.; Chen, C.-C.; Chang, J.-S. Fermentative hydrogen production from wastewaters: A review and prognosis. Int. J. Hydrog. Energy 2012, 37(20), 15632–15642.
  • Karadag, D. Anaerobic H2 production at elevated temperature (60°C) by enriched mixed consortia from mesophilic sources. Int. J. Hydrog. Energy 2011, 36(1), 458–465.
  • Hafez, H.; Nakhla, G.; El. Naggar, M.H.; Elbeshbishy, E.; Baghchehsaraee, B. Effect of organic loading on a novel hydrogen bioreactor. Int. J. Hydrog. Energy 2010, 35(1), 81–92.
  • Ozmihci, S.; Kargi, F. Bio-hydrogen production by photo-fermentation of dark fermentation effluent with intermittent feeding and effluent removal. Int. J. Hydrog. Energy 2010, 35(13), 66746680.
  • Mohan, S. V. Fermentative hydrogen production with simultaneous wastewater treatment: influence of pretreatment and system operating conditions. J. Sci. Ind. Res. 2008, 67, 950–961.
  • Ren, N.-Q.; Guo, W.-Q.; Wang, X.-J.; Xiang, W.-S.; Liu, B.-F.; Wang, X.-Z.; Ding, J.; Chen, Z.-B. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. Int. J. Hydrog. Energy 2008, 33(16), 4318–4324.
  • Hernández-Mendoza, C.E.; Buitrón, G. Suppression of methanogenic activity in anaerobic granular biomass for hydrogen production. J. Chem. Technol. Biotechnol. 2013, 89(1), 143–149.
  • Sung, S.; Raskin, L.; Duangmanee, T.; Padmasiri, S.; Simmons, J.J. Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments. Proceedings of the 2002 U.S. DOE Hydrogen Program Review, Report No. NREL/CP-610-32405; U.S. Department of Energy: Washington, DC, 2002; 1–17.
  • Khanal, S. K.; Chen, W.-H.; Li, L.; Sung, S. Biohydrogen production in continuous-flow reactor using mixed microbial culture. Water Environ. Res. 2006, 78(2), 110–117.
  • Chen, C.; Lin, C.; Chang, J. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl. Microbiol. Biotechnol. 2001, 57(1–2), 56–64.
  • O-Thong, S.; Prasertsan, P.; Birkeland, N.-K. Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresour. Technol. 2009, 100(2), 909–918.
  • Ohnishi, A. Potential use of Megasphaera elsdenii as a hydrogen producer. Clostridial: Biotechnology. Medicinal Application and Implication, Clinton, S. V.; Kelly, M. F., Eds.; Nova Science Publishers: New York, 2012, 137–145.
  • Nadais, H.; Barbosa, M.; Capela, I.; Arroja, L.; Ramos, C.G.; Grilo, A.; Sousa, S.A.; Leitão, J.H. Enhancing wastewater degradation and biogas production by intermittent operation of UASB reactors. Energy 2011, 36(4), 2164–2168.
  • Lay, C.-H.; Sen, B.; Kuo, S.-Y.; Chen, C.-C.; Lin, C.-Y. Biohydrogen production from textile wastewater by mixed microflora in an intermittent-flow, stirred tank reactor: effect of feeding frequency. J. Chin. Chem. Soc. 2014, 61(7), 791–796.
  • Kim, T.G.; Yi, T.; Lee, E.-H.; Ryu, H.W.; Cho, K.-S. Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl. Microbiol. Biotechnol. 2012, 95(4), 1051–1059.
  • Steinberg, L.M.; Regan, J.M. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl. Environ. Microbiol. 2008, 74(21), 6663–6671.
  • Zeleke, J.; Lu, S.-L.; Wang, J.-G.; Huang, J.-X.; Li, B.; Ogram, A.; Quan, Z.-X. Methyl coenzyme M reductase A (mcrA) gene-based investigation of methanogens in the mudflat sediments of Yangtze River estuary, China. Microb. Ecol. 2013, 66(2), 257–267.
  • Kim, T. G.; Moon, K.-E.; Yun, J.; Cho, K.-S. Comparison of RNA- and DNA-based bacterial communities in a lab-scale methane-degrading biocover. Appl. Microbiol. Biotechnol. 2013, 97, 3171–3181.
  • Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; Sahl, J.W.; Stres, B.; Thallinger, G.G.; Van Horn, D.J.; Weber, C.F. Introducing mothur: Open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75(23), 7537–7541.
  • Díaz, E.E.; Stams, A.J.M.; Amils, R.; Sanz, J.L. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl. Environ. Microbiol. 2006, 72(7), 4942–4949.
  • de Amorim, E.L.C.; Sader, L.T.; Silva, E.L. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor. Appl. Biochem. Biotechnol. 2012, 166(5), 1248–1263.
  • Baghchehsaraee, B.; Nakhla, G.; Karamanev, D.; Margaritis, A.; Reid, G. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int. J. Hydrog. Energy 2008, 33(15), 4064–4073.
  • Camu, N.; González, Á.; De Winter, T.; Van Schoor, A.; De Bruyne, K.; Vandamme, P.; Takrama, J.S.; Addo, S.K.; De Vuyst, L. Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Appl. Environ. Microbiol. 2008, 74(1), 86–98.
  • Papalexandratou, Z.; Vrancken, G.; De Bruyne, K.; Vandamme, P.; De Vuyst, L. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiol. 2011, 28(7), 1326–1338.
  • Raspor, P.; Goranovic, D. Biotechnological applications of acetic acid bacteria. Crit. Rev. Biotechnol. 2008, 28(2), 101–124.
  • Moens, F.; Lefeber, T.; De Vuyst, L. Oxidation of metabolites highlights the microbial interactions and role of Acetobacter pasteurianus during cocoa bean fermentation. Appl. Environ. Microbiol. 2014, 80(6), 1848–1857.
  • Singh, L.; Wahid, Z.A. Enhancement of hydrogen production from palm oil mill effluent via cell immobilisation technique. Int. J. Energ. Res. 2015, 39(2), 215–222.
  • Weimer, P.J.; Moen, G.N. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81. Appl. Microbiol. Biotechnol. 2013, 97(9), 4075–4081.
  • Van Dijk, C.; Veeger, C. The effects of pH and redox potential on the hydrogen production activity of the hydrogenase from Megasphaera elsdenii. Eur. J. Biochem. 1981, 114(2), 209–219.
  • Mariakakis, I.; Meyer, C.; Steinmetz, H. Fermentative hydrogen production by molasses; effect of hydraulic retention time, organic loading rate and microbial dynamics. In: Hydrogen Energy - Challenges and Perspectives; Minic, D., Ed.; InTech: Rijeka, Croatia, 2012; 121–148.
  • Lo, Y.-C.; Chen, W.-M.; Hung, C.-H.; Chen, S.-D.; Chang, J.-S. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: Feasibility and kinetic studies. Water Res. 2008, 42(4–5), 827–842.
  • Wang, Y.; Zhang, Y.; Wang, J.; Meng, L. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenerg. 2009, 33(5), 848–853.
  • Siegert, I.; Banks, C. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Proc. Biochem. 2005, 40(11), 3412–3418.
  • van den Heuvel, J.C.; Verschuren, P.G.; Beeftink, H.H.; de Beer, D. Determination of the critical concentration of inhibitory products in a repeated fed-batch culture. Biotechnol. Tech. 1992, 6(1), 33–38.
  • Singh, L.; Wahid, Z.A. Methods for enhancing bio-hydrogen production from biological process: A review. J. Ind. Eng. Chem. 2015, 21, 70–80.
  • Kalle, G.P.; Menon, K.K.G. Inhibition of methanogenesis and its reversal during biogas formation from cattle manure. J. Biosci. 1984, 6(3), 315–324.
  • Liu, W.-T.; Chan, O.-C.; Fang, H.H.P. Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res. 2002, 36(13), 3203–3210.
  • Lopez-Escobar, L.A.; Martinez-Hernandez, S.; Corte-Cano, G.; Mendez-Contreras, J.M. Influence of organic loading rate on methane production in a CSTR from physicochemical sludge generated in a poultry slaughterhouse. J. Environ. Sci. Health Pt. A-Toxic/Hazard. Subst. Environ. Eng. 2014, 49(14), 1710–1717.
  • Franke-Whittle, I.H.; Walter, A.; Ebner, C.; Insam, H. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manage. 2014, 34(11), 2080–2089.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.