Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 1
420
Views
11
CrossRef citations to date
0
Altmetric
ARTICLES

Analysis of heavy metals from water, sediment, and tissues of Labeo angra (Hamilton, 1822), from an Ox-box lake- an wetland site from Assam, India

&
Pages 21-33 | Received 22 May 2015, Published online: 30 Sep 2015

References

  • Clijsters, H.; Vangronsveld, J.; van der Lelie, N.; Colpaert, J. Ecological aspects of phytostabilization of heavy metal contaminated soils. In Structure and Function in Plants and Ecosystems- Topics in Ecology; Ceulemans, R.; Bogaert, J.; Deckmyn, G.; Nijs, I., Eds.; University of Antwerp, UIA: Wilrijk, Belgium, 2000; 299–306.
  • Chatterjee, M.; Massolo, S.; Sarkar, S.K.; Bhattacharya, A.K.; Bhattacharya, B.D.; Satpathy, K.K.; Saha, S. An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environ. Monit. Assess. 2009, 150, 307–322.
  • Chattopadhyay, B.; Chatterjee, A.; Mukhopadhyay, S. K. Bioaccumulation of metals in the East Calcutta wetland ecosystem. Aquat. Ecosyst. Health Manage. 2002, 5, 191–203.
  • Rao, A.S. Distribution of pesticides, PAHs and heavy metals in prawn ponds near Kolleru lake wetland, India. Environ. Int. 2006, 32, 294–302.
  • Bai, J.; Xiao, R.; Cui, B.; Zhang, K.; Wang, Q.; Liu, X.; Gao, H.; Huang, L. Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environ. Pollut. 2011, 159, 817–824.
  • Cui, B.; Yang, Q.; Yang, Z.; Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 2009, 35, 1090–1103.
  • Salamat, N.; Etemadi-Deylami, E.; Movahedinia, A.; Mohammadi, Y. Heavy metals in selected tissues and histopathological changes in liver and kidney of common moorhen (Gallinulachloropus) from Anzali wetland, the south Caspian Sea, Iran. Ecotoxicol. Environ. Safe. 2014, 110, 298–307.
  • Birungi, X.; Masola, B.; Zaranyika, M.F.; Naigaga, I.; Marshall, B. Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species—The case of Nakivubo wetland along Lake Victoria. Phys. Chem. Earth, Pt. A/B/C. 2007, 32, 1350–1358.
  • Kalisińska, E.; Salicki, W.; Mysłek, P.; Kavetska, K.M.; Jackowski, A. Using the mallard to biomonitor heavy metal contamination of wetlands in north-western Poland. Sci. Total Environ. 2004, 320, 145–161.
  • Williams, T.P.; Bubb, J.M.; Lester, J.N. Metal accumulation within salt marsh environments: A review. Mar. Pollut. Bull. 1994, 28, 277–290.
  • Groth, E. III. Ranking the contributions of commercial fish and shellfish varieties to mercury exposure in the United States: Implication for risk communication. Environ. Res. 2010, 110, 226–236.
  • Mendil, D.; Demirci, Z.; Tuzen, M.; Soylak, M. Seasonal investigation of trace element contents in commercially valuable fish species from the Black Sea, Turkey. Food Chem. Toxicol. 2010, 48, 865–870.
  • Storelli, M.M. Potential human health risk from metals (Hg, Cd and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem. Toxicol. 2008, 46, 2782–2788.
  • Chow, T.E.; Gaines, K.F.; Hodgson, M.E.; Wilson, M.D. Habitat and exposure modeling for ecological risk assessment: A case study for the raccoon on the Savanah River Site. Ecol. Model. 2005, 189, 151–167.
  • Hope, B.K. An examination of ecological risk assessment and management practices. Environ. Int. 2006, 32, 983–995.
  • Kar, D. Wetlands and lakes of the world; Springer: New Delhi, 2013; 289–436.
  • Mazumdar, K.; Das, S. Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in North East India. Environ. Sci. Pollut. Res. 2015, 22, 701–710.
  • Warne, S. Hakaluki Haor Conservation Management Plan. Department of Environment: Bangladesh, 2005.
  • Nsikak, U.B.; Joseph, P.E.; Akan, B.W.; David, E.B. Mercury accumulation in fishes from tropical aquatic ecosystems in the Niger Delta, Nigeria. Curr. Sci. India. 2007, 92, 781–785.
  • Eaton, A.D.; Clesceri, L.S.; Greenberg, A.E. Standard Methods of the Examination of Water and Wastewater, 19th edn. APHA: Washington DC, 1995.
  • Isaac, R.A.; Kerber, J.D. Atomic absorption and flame photometry: Techniques and uses in soil and plant and water analysis. In Instrumental methods for analysis of soils and plant tissue; Walsh, L.M., Ed.; Soil Science Society of America: Madison, WI, 1971; 125.
  • Opperhuizen, A. Bioconcentration and biomagnification: Is a distinction necessary? In Bioaccumulation in Aquatic Systems; Nagel, R.; Loskill, R., Eds.; VCH Publishers: Weinheim, 1991; 67–80.
  • Usero, J.; González-Regalado, E.; Gracia, I. Trace metal in the bivalve mollusks Ruditapes decussates and Ruditapes philippinarium from the Atlantic coast of southern Spain (J). Environ. Int. 1997, 23, 291–298.
  • Food and Agricultural Organization (FAO). Compilation of legal limits for hazardous substances in fish and fishery products, Fishery Circular, No. 464, 5–100. Food and Agricultural Organization: Rome, 1983.
  • MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus based sediment quality guidelines for fresh water ecosystems. Arch. Environ. Con. Tox. 2000, 39, 20–31.
  • Ontario Ministry of the Environment (MOE). Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of the Environment. Queen's Printer for Ontario: Ontario, 1993.
  • World Health Organization (WHO). Guidelines for Drinking-Water Quality, Volume 1: Recommendations, 3rd ed., incorporating the first and second addenda. World Health Organization (WHO): Geneva, 2008.
  • Indian Standard. Drinking Water Specification, Indian Standard (IS 10500:2004), 2nd revision, Indian Standard: New Delhi, 2004.
  • Environment Studies Board (ESB). Trace Eements Tolerance for Irrigation Waters. Environment Studies Board: Delhi, India, 1973.
  • Mdegela, R.H.; Braathen, M.; Pereka, A.E.; Mosha, R.D.; Sandvik, M.; Skaare, J.U. Heavy metals and organochlorine residues in water, sediments, and fish in aquatic ecosystems in urban and peri-urban areas in Tanzania. Water Air Soil Poll. 2009, 203, 369–379.
  • Burton, G.A. Jr. Sediment quality criteria in use around the world. Limnology 2002, 3, 65–75.
  • Wu, J.; Men, X.X.; Li, K. Phytoremediation of soils contaminated by lead. Soils 2005, 37, 258–264.
  • Zheng, N.; Wang, Q.; Liang, Z.; Zheng, D. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environ. Pollut. 2008, 154, 135–142.
  • Micό, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere. 2006, 65, 863–872.
  • Han, Y.; Du, P.; Cao, J.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China. Sci. Tot. Environ. 2006, 355, 176–186.
  • Martín, J.A.R.G.; Arias, M.L.P.; Corbí, J.M.G. Heavy metal contents in agricultural top soils in the Ebro basin (Spain)-application of the multivariate geo-statistical methods to study spatial variations. Environ. Pollut. 2006, 144, 1001–1012.
  • Ip, C.C.M.; Li, X.; Zhang, G.; Wai, O.W.H.; Li, Y. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environ. Pollut. 2007, 147, 311–323.
  • Kamunde, C.; Grosell, M.; Higgs, D.; Wood, C.M. Copper metabolism in actively growing rainbow trout (Oncorhynchusmykiss): interactions between dietary and waterborne copper uptake. J. Exp. Biol. 2002, 205, 279–290.
  • Håkanson, L.; Jansson, M. Principles of Lake Sedimentology; Springer Verlag: Berlin, 1983.
  • Li, F.Y.; Fan, Z.P.; Xiao, P.F.; Oh, K.; Ma, X.P.; Hou, W. Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environ. Geol. 2009, 54, 1815–1823.
  • Kim, J.O.; Mueller, C.W. Introduction to Factor Analysis: What It Is and How To Do It. Quantitative Applications in the Social Sciences Series. Sage Publications: Newbury Park, CA, 1987.
  • Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis assessment of groundwater quality in a Blackfoot disease area in Taiwan. Sci. Tot. Environ. 2003, 313, 77–89.
  • Abdi, H. Factor rotations. In Encyclopedia for Research Methods for the Social Sciences; Lewis-Beck, M., Ed.; Sage: Thousand Oaks, CA, 2003; 978–982.
  • Chandra, P.; Sinha, S.; Rai, U.N. Bioremediation of chromium form waste and soil by vascular aquatic plants. In Phytoremediation of Soil and Water; Kruger, E.; Anderson, T.A.; Coats, J.R., Eds.; American Chemical Society: Washington, DC, 1997; 274–282.
  • Bury, N.R.; Walker, P.A.; Glover, C.N. Nutritive metal uptake in teleost fish. J. Exp. Biol. 2003, 206, 11–23.
  • Umasuthan, N.; Revathy, K.S.; Bathige, S.D.N.K.; Lim, B.S.; Park, M.E.; Whanga, I.; Lee, J. A manganese superoxide dismutase with potent antioxidant activity identified from Oplegnathus fasciatus: Genomic structure and transcriptional characterization. Fish Shellfish Immun. 2013, 34, 23–37.
  • Racette, B.A.; McGee-Minnich, L.; Moerlein, S.M.; Mink, J.W.; Videen, T.O.; Perlmutter, J.S. Welding-related Parkinsonism: Clinical features, treatment, and pathophysiology. Neurology 2001, 56, 8–13.
  • Levi, S.; Rovida, E. The role of iron in mitochondrial function. Biochim. Biophys. Acta 2009, 1790, 629–636.
  • Qin, J.; Chai, G.; Brewer, J.M.; Lovelace, L.L.; Lebioda, L. Fluoride inhibition of enolase: crystal structure and thermodynamics. Biochemistry—U.S. 2006, 45, 793–800.
  • Lall, S.P. The minerals. In Fish Nutrition; Halver, J.E.; Hardy, R.W., Eds.; Academic Press: New York, 2002; 259–308.
  • Genz, J.; Carriere, B.; Anderson, W.G. Mechanisms of calcium absorption by anterior and posterior segments of the intestinal tract of juvenile lake sturgeon. Comp. Biochem. Phys. A 2013, 166, 293–301.
  • Klinck, J.S.; Singh, A.; Wood, C.M. In vitro characterization of calcium transport along the gastrointestinal tract of freshwater rainbow trout Oncorhynchusmykiss. J. Fish Biol. 2012, 81, 1–20.
  • Peña, M.M.O.; Lee, J.; Thiele, D.J. A delicate balance: homeostatic control of copper uptake and distribution. J. Nutr. 1999, 129, 1251–1260.
  • Turnlund, J.R.; Keyes, W.R.; Peiffer, G.L.; Scott, K.C. Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am. J. Clin. Nutr. 1998, 67, 1219–1225.
  • Grosell, M.H.; Hogstrand, C.; Wood, C.M. Cu uptake and turnover in both Cu acclimated and non-acclimated rainbow trout (Oncorhychus mykiss). Aquat. Toxicol. 1997, 38, 257–276.
  • Huang, E.P. Metal ions and synaptic transmission: Think zinc. P. Natl. Acad. Sci. USA, 1997, 94, 13386–13387.
  • Lockwood, M.P. Effects of Pollutants on Aquatic Organisms. Cambridge University Press: New York, 1976.
  • Tjälve, H.; Gottofrey, J.; Björklund, I. Tissue disposition of 109Cd2+ in the brown trout (Salmo trutta) studied by autoradiography and impulse counting. Toxicol. Environ. Chem. 1986, 12, 31–45.
  • Li, Z.H.; Li, P.; Dzyuba, B.; Randak, T. Influence of environmental related concentrations of heavy metals on motility parameters and antioxidant responses in sturgeon sperm. Chem-Biol. Interact. 2010, 188, 473–477.
  • García-Lestόn, J.; Méndez, J.; Pásaro, E.; Laffon, B. Genotoxic effects of lead: an updated review. Environ. Int. 2010, 36, 623–636.
  • Kozlova, T.; Wood, C.M.; McGeer, J.C. The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model. Aquat. Toxicol. 2009, 91, 221–228.
  • Eastwood, S.; Couture, P. Seasonal variations in condition and liver metal concentrations of yellow perch (Perca flavescens) from a metal-contaminated environment. Aquat. Toxicol. 2002, 58, 43–56.
  • Giguere, A.; Campbell, P.G.C.; Hare, L.; McDonald, D.G.; Rasmussen, J.B. Influence of lake chemistry and fish age on Cd, Cu and Zn concentrations in various organs of indigenous yellow perch (Percaflavescens). Can. J. Fish. Aquat. Sci. 2004, 61, 1702–1716.
  • Fairbrother, A.; Wenstel, R.; Sappington, S.; Wood, W. Framework for metals risk assessment. Ecotoxicol. Environ. Safe. 2007, 68, 145–227.
  • Mayer, F.L.; Versteeg, D.G.; McKee, M.J.; Folmar, L.C.; Graney, R.L.; McCume, D.C.; Rattner, B.A. Metabolic products as biomarkers. In Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress; Hugget, R.J.; Kimerly, R.A.; Mehrle, P.M.; Bergman, H.L., Eds.; Lewis: Chelsea, MI, 1992; 5–86.
  • Laflamme, J.S.; Couillard, Y.; Campbell, P.G.C.; Hontela, A. Interrenal metallothionein and cortisol secretion in relation to Cd, Cu and Zn exposure in yellow perch, Perca flavescens from Abitibi lakes. Can. J. Fish. Aquat. Sci. 2000, 57, 1692–1700.
  • Fernandes, C.; Fontaínhas-Fernandes, A.; Cabral, D.; Salgado, M.A. Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz–Paramos lagoon, Portugal. Environ. Monit. Assess. 2008, 136, 267–275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.