Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 3
433
Views
18
CrossRef citations to date
0
Altmetric
ARTICLES

Electricity generation and nutrients removal from high-strength liquid manure by air-cathode microbial fuel cells

, , , &
Pages 240-250 | Received 15 Jun 2015, Published online: 14 Dec 2015

References

  • Girard, M.G.M.; Nikiema, J.N.J.; Brzezinski, R.B.R.; Buelna, G.B.G.; Heitz, M.H.M. A review of the environmental pollution originating from the piggery industry and of the available mitigation technologies: Towards the simultaneous biofiltration of swine slurry and methane. Can. J. Civil Eng. 2009, 36(12), 1946–1957.
  • Poach, M.E.; Hunt, P.G.; Reddy, G.B.; Stone, K.C.; Johnson, M.H.; Grubbs, A. Swine wastewater treatment by marsh-pond-marsh constructed wetlands under varying nitrogen loads. Ecol. Eng. 2004, 23(3), 165–175.
  • Martinez, J.; Dabert, P.; Barrington, S.; Burton, C. Livestock waste treatment systems for environmental quality, food safety, and sustainability. Bioresour. Technol. 2009, 100(22), 5527–5536.
  • Fornero, J.J.; Rosenbaum, M.; Angenent, L.T. Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis 2010, 22(7/8), 832–843.
  • Logan, B.E. Microbial Fuel Cells, 1st ed.; Wiley-Interscience: Hoboken, New Jersey, 2008.
  • Kim, J.R.; Dec, J.; Bruns, M.A.; Logan, B.E. Removal of odors from swine wastewater by using microbial fuel cells. Appl. Environ. Microbiol. 2008, 74(8), 2540–2543.
  • Min, B.; Kim, J.R.; Oh, S.E.; Regan, J.M.; Logan, B.E. Electricity generation from swine wastewater using microbial fuel cells. Water Res, 2005, 39(20), 4961–4968.
  • Kim, J.R.; Zuo, Y.; Regan, J.M.; Logan, B.E. Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol. Bioeng. 2008, 99(5), 1120–1127.
  • Nam, J.Y.; Kim, H.W.; Shin, H.S. Ammonia inhibition of electricity generation in single-chambered microbial fuel cells. J. Power Sour. 2010, 195(19), 6428–6433.
  • Xu, Z.; Zhao, M.; Miao, H.; Huang, Z.; Gao, S.; Ruan, W. In situ volatile fatty acids influence biogas generation from kitchen wastes by anaerobic digestion. Bioresour. Technol. 2014, 163, 186–192.
  • Jin, N.; Jin, B.; Zhu, N.; Yuan, H.; Ruan, J. Disinhibition of excessive volatile fatty acids to improve the efficiency of autothermal thermophilic aerobic sludge digestion by chemical approach. Bioresour. Technol. 2015, 175, 120–127.
  • Pratt, S.; Liew, D.; Batstone, D.; Werker, A.; Morgan-Sagastume, F.; Lant, P. Inhibition by fatty acids during fermentation of pre-treated waste activated sludge. J. Biotechnol. 2012, 159(1), 38–43.
  • Jones, R.J.; Massanet-Nicolau, J.; Guwy, A.; Premier, G.C.; Dinsdale, R.M.; Reilly, M. Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis. Bioresour. Technol. 2015, 189, 279–284.
  • Kithome, M.; Paul, J.; Lavkulich, L.; Bomke, A. Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soil Sci. Soc. Amer. J. 1998, 62(3), 622–629.
  • Widiastuti, N.; Wu, H.; Ang, H.M.; Zhang, D. Removal of ammonium from greywater using natural zeolite. Desalination 2011, 277(1/3), 15–23.
  • Lin, H.; Wu, X.; Miller, C.; Zhu, J. Improved performance of microbial fuel cells enriched with natural microbial inocula and treated by electrical current. Biomass Bioener. 2013, 54, 170–180.
  • Liu, H.; Logan, B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38(14), 4040–4046.
  • Zhao, F.; Slade, R.C.T.; Varcoe, J.R. Techniques for the study and development of microbial fuel cells: An electrochemical perspective. Chem. Soc. Rev. 2009, 38(7), 1926–1939.
  • Liu, H.; Cheng, S.; Logan, B.E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 2005, 39(14), 5488–5493.
  • Ro, K.S.; Cantrell, K.; Elliott, D.; Hunt, P.G. Catalytic wet gasification of municipal and animal wastes. Indust. Eng. Chem. Res. 2007, 46(26), 8839–8845.
  • Lee, Y.; Nirmalakhandan, N. Electricity production in membrane-less microbial fuel cell fed with livestock organic solid waste. Bioresour. Technol. 2011, 102(10), 5831–5835.
  • Zhang, G.; Zhao, Q.; Jiao, Y.; Wang, K.; Lee, D.-J.; Ren, N. Biocathode microbial fuel cell for efficient electricity recovery from dairy manure. Biosens. Bioelectron. 2012, 31(1), 537–543.
  • Hinz, A.; Larsson, P.-O.; Skårman, B.; Andersson, A. Platinum on alumina, titania, and magnesia supports for the combustion of methanol in a waste gas with trace amount of ammonia. Appl. Catal. B: Environ. 2001, 34(2), 161–178.
  • Hinz, A.; Larsson, P.-O.; Andersson, A. Influence of pt loading on Al2O3 for the low temperature combustion of methanol with and without a trace amount of ammonia. Catal. Lett. 2002, 78(1/4), 177–183.
  • Halseid, R.; Vie, P.J.; Tunold, R. Effect of ammonia on the performance of polymer electrolyte membrane fuel cells. J. Power Sour. 2006, 154(2), 343–350.
  • He, Z.; Wagner, N.; Minteer, S.D.; Angenent, L.T. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol. 2006, 40(17), 5212–5217.
  • You, S.J.; Zhao, Q.L.; Jiang, J.Q.; Zhang, J.N.; Zhao, S.Q. Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell. J. Environ. Sci. Health Pt. A 2006, 41(12), 2721–2734.
  • Rodrigo, M.; Canizares, P.; Lobato, J.; Paz, R.; Sáez, C.; Linares, J. Production of electricity from the treatment of urban waste water using a microbial fuel cell. J. Power Sourc. 2007, 169(1), 198–204.
  • Kuntke, P.; Śmiech, K.; Bruning, H.; Zeeman, G.; Saakes, M.; Sleutels, T.; Hamelers, H.; Buisman, C. Ammonium recovery and energy production from urine by a microbial fuel cell. Water Res. 2012, 46(8), 2627–2636.
  • Fischer, F.; Bastian, C.; Happe, M.; Mabillard, E.; Schmidt, N. Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite. Bioresour. Technol. 2011, 102(10), 5824–5830.
  • Popat, S.C.; Ki, D.; Rittmann, B.E.; Torres, C.I. Importance of oh− transport from cathodes in microbial fuel cells. Chem.Sus.Chem. 2012, 5(6), 1071–1079.
  • Rothrock Jr, M.; Szogi, A.; Vanotti, M. Recovery of ammonia from poultry litter using gas-permeable membranes. Trans. ASABE 2010, 53(4), 1267–1275.
  • Vanotti, M.B.; Szogi, A.A. Use of gas-permeable membranes for the removal and recovery of ammonia from high strength livestock wastewater. Proc. Water Environ. Feder. 2011, 2011, 1, 659–667.
  • Ichihashi, O.; Hirooka, K. Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell. Bioresour. Technol. 2012, 114, 303–307.
  • Yuan, X.; Shi, X.; Zhang, D.; Qiu, Y.; Guo, R.; Wang, L. Biogas production and microcystin biodegradation in anaerobic digestion of blue algae. Energy Environ. Sci. 2011, 4(4), 1511–1515.
  • Kotsopoulos, T.; Karamanlis, X.; Dotas, D.; Martzopoulos, G. The impact of different natural zeolite concentrations on the methane production in thermophilic anaerobic digestion of pig waste. Biosyst. Eng. 2008, 99(1), 105–111.
  • Borja, R.; Sánchez, E.; Duran, M. Effect of the clay mineral zeolite on ammonia inhibition of anaerobic thermophilic reactors treating cattle manure. J. Environ. Sci. Health Pt. A 1996, 31(2), 479–500.
  • Milán, Z.; Sánchez, E.; Weiland, P.; Borja, R.; Martín, A.; Ilangovan, K. Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste. Bioresour. Technol. 2001, 80(1), 37–43.
  • Katuri, K.P.; Scott, K.; Head, I.M.; Picioreanu, C.; Curtis, T.P. Microbial fuel cells meet with external resistance. Bioresour. Technol. 2011, 102(3), 2758–2766.
  • Jia, Y.H.; Tran, H.T.; Kim, D.H.; Oh, S.J.; Park, D.H.; Zhang, R.H.; Ahn, D.H. Simultaneous organics removal and bio-electrochemical denitrification in microbial fuel cells. Bioproc. Biosyst. Eng. 2008, 31(4), 315–321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.