Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 4
294
Views
10
CrossRef citations to date
0
Altmetric
ARTICLES

Evaluation of urban environment pollution based on the accumulation of macro- and trace elements in epiphytic lichens

, , &
Pages 297-308 | Received 19 Jun 2015, Published online: 08 Jan 2016

References

  • Ludenius, M.; Kiiskinen, J.; Tulisalo, E. Metal levels in an epiphytic lichen as indicators of air quality in a suburb of Helsinki, Finland. Boreal Environ. Res. 2010, 15, 446–452.
  • Buszewski, B.; Jastrzębska, A.; Kowalkowski, T.; Górna-Binkul, A. Monitoring of selected heavy metals uptake by plants and soils in the area of Toruń, Poland. Pol. J. Environ. Stud. 2000, 9(6), 511–515.
  • Yang, Y.; Peterson. E.; Cambell, C. Accumulation of heavy metals in urban soils and impacts on microorganism. Huan Jing Ke Xue 2001, 22(3), 44–48.
  • Krauss, H.; Wilcke, W.; Zech, W. Reactivity and bioavailability of PAHs and PCBs urban soils of Beyreuth. Proceedings First International Conference Soils of Urban, Industrial, Traffic and Mining Areas, (W. Burghardt and C. Dornauf Eds.) Essen 12–18, July, 2000; 657–661.
  • Clair, S.B.; Clair, L.L.; Mangelson, N.F.; Weber, D.J. Influence of growth form on the accumulation of airborne copper by lichens. Atmos. Environ. 2002, 36, 5637–5644.
  • Hauck, M. Epiphytic lichen diversity on dead and dying conifers under different of atmospheric pollution. Environ. Pollut. 2005, 135, 111–119.
  • Białońska, D.; Dayan, F.E. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. J. Chem. Ecol. 2005, 31(12), 2975–2991.
  • Wolseley, P.A.; James, P.W.; Theobald, M.R.; Sutton, M.A. Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources. Lichenologist 2006, 38, 161–176.
  • Brunialti, G.; Frati, L. Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: A retrospective study over a 7-year time span. Sci. Tot. Environ. 2007, 387, 289–300.
  • Frati, L.; Santoni, S.; Nicolardi, V.; Gaggi, C.; Brunialti, G.; Guttova, A.; Gaudino, S.; Pati A.; Pirintsos, S.A.; Loppi S. Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm. Environ. Pollut. 2007, 146, 311–316.
  • Larsen, R.S.; Bell, J.N.B.; James, P.W.; Chimonides, P.J.; Rumsey, F.J.; Tremper, A.; Purvis O.W. Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environ. Pollut. 2007, 146(2), 332–340.
  • Sparrius, L.B. Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of The Netherlands. Environ. Pollut. 2007, 146, 375–379.
  • Otnyukova, T. Epiphytic lichen growth abnormalities and element concentrations as early indicators of forest decline. Environ. Pollut. 2007, 146, 359–365.
  • Dzubaj, A.; Backor, M.; Tomko, J.; Peli, E.; Tuba Z. Tolerance of the lichen Xanthoria parietina. Ecotoxicol. Environ. Saf. 2008, 70(2), 319–326.
  • Adamo, P.; Bargagli, R.; Giordano, S.; Modenesi, P.; Monaci, F.; Pittao, E.; Spagnuolo, V.; Tretiach M. Natural and pre-treatments induced variability in the chemical composition and morphology of lichens and mosses selected for active monitoring of airborne elements. Environ. Pollut. 2008, 152, 11–19.
  • Berthelsen, K.; Olsen, H.; Søchting, U. Indicator values for lichens on Quercus as a tool to monitor ammonia pollution in Denmark. Sauteria 2008, 15, 59–77.
  • Godinho, R.M.; Verburg, T.G.; Freitas, M.C.; Wolterbeek, H.T. Accumulation of trace elements in the peripheral and central parts of two species of epiphytic lichens transplanted to a polluted site in Portugal. Environ. Pollut. 2009, 157(1), 102–109.
  • Mendil D.; Celik F.; Tuzen M.; Soyolak M. Assessment of trace metal levels in some moss and lichen samples collected from near the motorway in Turkey. J. Hazard. Mater. 2009, 166, 1344–1350.
  • Aslan, A.; Cicek, A.; Yazici, K.; Karagoz, Y.; Turan, M.; Akkus, F.; Yildrim O.S. The assessment of lichens as bioindicator of heavy metal pollution from motor vehicles activities. Afr. J. Agric. Res. 2011, 6, 1698–1706.
  • Das, K.; Dey, U.; Bhaumik, R.; Datta, J.K.; Mondal N.K. A comparative study of lichen biochemistry and air pollution status of urban, semi urban and industrial area of Hooghly and Burdwan district, West Bengal. J. Stress Physiol. Biochem. 2001, 7(4), 311–323.
  • Guttova, A.; Lackovičova, A.; Pišut, I.; Pišut P. Decrease air pollution load in urban environment of Bratislava (Slovakia) inferred from accumulation of metal elements in lichens. Environ. Monit. Assess. 2011, 182, 361–373.
  • Paoli, L.; Corsini, A.; Bigagli, V.; Vannini, J.; Bruscoli, C.; Loppi S. Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environ. Pollut. 2012, 161, 70–75.
  • Kularatne, K.I.A.; de Freitas, C.R. Epiphytic lichens as biomonitors of airborne heavy metals pollution, Environ. Exp. Bot. 2013, 88, 24–32.
  • Stamenković, S.S.; Mitrović, T.L.J.; Cvetković, V.J.; Kristić, N.S.; BaoŠić Rada, M.; Marković M.S.; Nikolić, N.D.; Marković, V.L.J.; Cvijan M.V. Biological indication of heavy metal pollution in the areas of Donje valse and Cerje (southeastern Serbia) using epiphytic lichens. Arch. Biol. Sci. Belgrade 2013, 65(1), 151–159.
  • Conti, M.E.; Cecchetti, G. Biological monitoring: lichens as bioindicators of air pollution assessment - a review. Environ. Pollut. 2001, 114, 471–492.
  • Conti, M.E.; Tudino, M.; Stripeikis, J.; Cecchetti G. Heavy metal accumulation in the lichen Evernia prunastri transplanted at urban, Rural and industrial sites in Central Italy. J. Atmos. Chem. 2004, 49, 83–94.
  • Garty, J. Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit. Rev. Plant Sci. 2001, 20, 309–371.
  • Demirbas, A. Trace elements concentrations in Ashes from various types of lichen biomass species. Energ. Sources 2004, 26, 499–506.
  • Berryman, S.; Straker, J.; Straker, D. Using lichens as bioindycators of air pollution deposition near remote mining operations, 2013. Available at https://circle.ubc.ca/bitstream/handle/2429/24648/12Berryman.pdf?sequence = 1) ( accessed Mar 2015).
  • Kar, S.; Samal, A.C.; Maity, J.P.; Santra S.C. Diversity of epiphytic lichens and their role in sequestration of atmospheric metals. Int. J. Environ. Sci. Technol. 2014, 11, 899–908.
  • Nimis, P.L.; Andreussi, S.; Pittao, E. The performance of two lichen species as bioaccumulators of trace metals. Sci. Total Environ. 2001, 275, 43–51.
  • Nash, T.H. Introduction. In: Lichen Biology. 2nd ed. Nash, T.H., Ed.; Cambridge University Press: New York, 2008; 1–8.
  • Scerbo, R.; Ristori, T.; Possenti, L.; Lampugnani, L.; Barale, R.; Barghigiani, C. Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air quality assessment in Pisa Province (Tuscany, Italy). Sci. Total Environ. 2002, 286, 27–40.
  • Cuny, D.; Davranche, L.; Thomas, P.; Kempa, M.; Van Haluwyn C. Spatial and temporal variations of trace element contents in Xanthoria parietina thalli collected in a highly industrialized area in northern France as an element for a future epidemiological study. J. Atmos. Chem. 2004, 49, 391–401.
  • Damps, K.; Zarembski, A.; Macczak, Z. An annual assessment of air quality in Pomeranian voivodship. Report for 2013. Available at http://www.gdansk.wios.gov.pl/images/files/ios/oceny/op13.pdf (in Polish) (accessed Apr 2015).
  • Izydorek, I.; Zduńczyk A. Species composition of lichens in the Słupsk city on Western Pomeranian region. Słupskie Prace Biologiczne 2007, 4, 21–26. (in Polish)
  • Bettinelli, M.; Spezia, S.; Bizzarri, G. Trace elements determination in lichens by ICP-MS, At. Spectrosc. 1996, 17, 133–141.
  • Hervé, A. Factor rotations in factor analyses. Available at http://www.utd.edu/∼herve/Abdi-rotations-pretty.pdf ( accessed Jan 2010).
  • Thurstone, L.L. Multiple-Factor Analysis; University of Chicago Press: Chicago, 1974.
  • Cattell, R.B. The Scientific Use of Factor Analysis in Behavioral and Life Sciences; Plenum Press: New York, 1978.
  • Oliver, M.A.; Webster, R. How geostatistics can help you? Soil Use Mgmt. 1991, 7, 206–217.
  • Yasrebi, J.; Saffari, M.; Fathi, H.; Karimian, N.; Moazallahi, M.; Gazni, R. Evaluation and comparison of ordinary Kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters. Res. J. Biol. Sci. 2009, 4(1), 93–102.
  • Webster, R.; Oliver, M.A. Sample adequate to estimate variograms of soil properties. Eur. J. Soil Sci. 2006, 43(1), 177–192.
  • Chang, T.K. Simulated annealing and kriging method for identifying the spatial patterns and variability of soil heavy metals. J. Environ. Sci. Health A 2000, 35(7), 1089–1115.
  • Cattle, J.A.; McBratney, A.B.; Minasny, B. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination, J. Environ. Qual. 2002, 31, 1576–1588.
  • Lin, Y.P.; Chang, T.K.; Shih, Ch.W.; Tseng, Ch.H. Factorial and indicator kriging methods using a geographic information system to delineate spatial variation and pollution sources of soil heavy metals. Environ. Geol. 2002, 42(8), 900–909.
  • Largueche, F.Z.B. Estimating soil contamination with Kriging interpolation method. Am. J. Appl. Sci. 2006, 3(6), 1894–1898.
  • Liu, T.L.; Juang K.W.; Lee D.Y. Interpolating soil properties using Kriging combined with categorical information of soil maps. Soil Sci. Soc. Am. J. 2006, 70, 1200–1209.
  • Astel, A.; Chepanova, L.; Simeonov, V. Soil contamination interpretation by the use of monitoring data analysis. Water, Air, Soil Pollut. 2011, 216(1), 375–390.
  • Russellflegal, A.; Gallon, C.; Hibdon S.; Kuspa Z.; Laporte A. Declinings but persistents atmospheric contamination in central California from the resuspension of historic leaded gasoline emissions as recorded in the lace lichen (Ramalina menziesii Taylor) from 1892 to 2006. Environ. Sci. Technol. 2010, 44, 5613–5618.
  • Kar, S.; Maity, J.P.; Samal, A.C.; Santra, S.C. Metallic components of traffic induced urban aerosol. Environ. Monit. Assess. 2010, 168, 561–574.
  • Li, X.; Poon, C.; Liu, P.S. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl. Geochem. 2001, 16, 1361–1368.
  • De Miguel, E.; Llamas, J.F.; Chacon, E.; Berg, T.; Larssen, S.; Røyset, O.; Vadset, M. Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos. Environ. 1997, 31, 2733–2740.
  • Friedlander, S.K. Chemical element balances and identification of air pollution sources. Environ. Sci. Technol. 1973, 7, 235–240.
  • Pacyna, J.M. Atmospheric trace elements from natural and anthropogenic sources. In: Toxic Metals in the Atmosphere; Nriagu, J.O., Davidson, C.I.; Eds.; Wiley: New York, 1986; 33–50.
  • Jang, H.N.; Kim, S.H.; Lee, J.H.; Hwang, K.W.; Yoo Y.I.; Sok, C.H.; Seo Y.C. Emission characteristics of fine particles, vanadium and nickel from heavy oil combustion. J. Korean Soc. Atmos. Environ. 2006, 22(3), 353–360.
  • Peltier, R.E.; Hsu, S.I.; Lall, R.; Lippmann, M. Residual oil combustion: a major source of airborne nickel in New York City. J. Exposure Sci. Environ. Epidemiol. 2009, 19(6), 603–612.
  • Marmor, L.; Randlane, T. Effects of road traffic on bark pH and epiphytic lichens in Tallinn. Folia Cryptog. Estonica, Fasc. 2007, 43, 23–37.
  • Louwhoff, S.H.J.; Elix, J.A. The lichen of Rarotonga, Cook Islands, South pacific Ocean II: Parmeliaceae. Lichenologist 2000, 32(1), 49–55.
  • Huneck, S. The significance of lichens and their metabolites. Naturwissenschaften 1999, 86, 559–570.
  • Boustie, J.; Grube, M. Lichens, a promising source of bioactive secondary metabolites. Plant Gen Res. 2005, 3, 273–287.
  • Huneck, S.; Yoshimura, I. Identification of Lichen Substances. Springer Verlag: Berlin, Heidelberg, 1996.
  • Nash, T.H.; Gries, C. Lichens as bioindicators of sulfur dioxide. Symbiosis 2002, 33, 1–21.
  • Smith, C.W.; Aptroot, A.; Coppins, B.J.; Fletcher, A.; Gilbert, O.L.; James, P.W.; Wolseley P.A. The lichens of Great Britain and Ireland. Brit. Lich. Soc., London, 2009.
  • Van Dobben, H.F.; Ter Braak C.J.F. Effects of atmospheric NH3 on epiphytic lichens in the Netherlands: the pitfalls of biological monitoring. Atmos. Environ. 1998, 32, 551–557.
  • Kirschbaum, U.; Hanewald, K. Verӓnderungen des Flechtenbewuchses in den hessischen Dauerbeobachtungsflӓchen melsungen und Limburg zwischen 1997 und 1999. J. Appl. Bot. - Angewandte Botanic 2000, 75, 20–30.
  • Gombert, S.; Asta, J.; Seaward M.R.D. Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environ. Pollut. 2003, 123, 281–290.
  • Grzebisz, W. Mechanisms of phosphorus intake by the plant. In: Element in the environment. Phosphorus. J. Elem. 2003, 8(3), Suppl. 33–46. (in Polish)
  • Parzych, A.; Jonczak, J. Pine needles (Pinus sylvestris L.) as bioindicators in the assessment of urban environmental contamination with heavy metals. J. Ecol. Eng. 2014, 15(3), 29–38.
  • Pasieczna, A. Atlas of urban soils contamination in Poland. National Institute of Geology, Warsaw, 2003. (in Polish)
  • Kabata-Pendias, A; Pendias, H. Biogeochemistry of trace elements. Polish Scientific Publishing, Warsaw, 1999. (in Polish)
  • Boonpragob, K.; Nash, T.H. III; Fox, C.A. Seasonal deposition patterns of acidic ions and ammonium to the lichen Ramalina menziesii Tayl. In Southern California. Environ. Exp. Bot. 1989, 29, 187–197.
  • Migaszewski, Z.; Gałuszka, A.; Crock, J.G.; Lamothe, P.J.; Doegowska S. Interspecies and interregional comparisons of the chemistry of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.)Mitt. from Poland and Alaska. Atmos. Environ. 2009, 43, 1464–1473.
  • Bergamaschi, L.; Rizzio, E.; Giaveri, G.; Loppi, S.; Gallorini, M. Comparison between the accumulation capacity of four lichen species transplanted to a urban site. Environ. Pollut. 2007, 148, 468–476.
  • Ellis, K.M.; Smith, J.N. Dynamic model for radionuclide uptake in lichen. J. Environ. Radioactiv. 1987, 5(3), 185–208.
  • Linak, W.P.; Miller, C.A. Comparison of particale size distributions and element partitioning from the combustion of pulverized coal and residual fuel oil. Air Waste Manage. Assoc. 2000, 50, 1532–1544.
  • Ottessen, R.T.; Alexander, J.; De Lange, R. Ground pollution in Bergen—Consequences for health and the environment. NGU Report 1999. Geol. Survey of Norway/Trondheim, 1999.
  • Majumder, S.; Mishra, D.; Ram, S.S.; Jana, N.K.; Santra, S.C.; Sudarshan, M.A., Physiological and chemical response of the lichen, Flavoparmelia caperata (L.) Hale, to the urban environment of Kolkata, India. Environ. Sci. Pollut. Res. 2013, 20, 3077–3085.
  • Bennet, J.P. Abnormal chemical element concentration lichens of Isle Royale National Park. Environ. Exp. Bot. 1995, 95(3), 259–277.
  • Krawczyk, J.; Letachowicz, B.; Klink, A.; Krawczyk, A. The use of selected plant species and lichen to assess the environmental pollution metals heavy. Zesz. Probl. Post. Nauk Rol. 2004, 501, 227–234. ( in Polish)
  • Monaci, F.; Bargagli, R. Barum and other trace metals as indicators of vehicle emissions. Water Air Pollut. 1997, 100, 89–98.
  • Freitas, M.C.; Reis, M.A.; Marques, A.P.; Wolterbeek H.Th. Use of lichen transplants in atmospheric deposition studies. J. Radioanal. Nucl. Chem. 2001, 249(2), 307–315.
  • Minganti, V.; Capelli, R.; Drava, G.; De Pellegrini, R.; Brunialti, G.; Giordani, P.; Modenesi, P. Biomonitoring of trace metals by different species of lichens (Parmelia) in North-West Italy. J. Atmos. Chem. 2013, 45(3), 219–229.
  • Bargagli, R.; Nimis, P.L. Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements. In: Monitoring with Lichens–Monitoring Lichens; Nimis, P.L., Scheidegger, C., Wolseley, P.A. Eds.; Kluwer Academic Publishers: Dordrecht, 2002; 295–299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.