Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 4
374
Views
10
CrossRef citations to date
0
Altmetric
ARTICLES

Effects of the soil microbial community on mobile proportions and speciation of mercury (Hg) in contaminated soil

, , , , , , , , , , & show all
Pages 364-370 | Received 30 Jul 2015, Published online: 13 Jan 2016

References

  • Henry, J.R. An Overview of the Phytoremediation of Lead and Mercury, U.S. Environmental Protection Agency, Washington, DC, 2000. Available at http://clu-in.org (accessed March 2011).
  • Moreno-Jimenez, E.; Gamarra, R.; Carpena-Ruiz, R.O.; Millan, R.; Penalosa, J.M.; Esteban, E. Mercury bioaccumulation and phytotoxicity in two wild plant species of Almaden area. Chemosphere 2006, 63, 1969–1973.
  • Rodríguez, L.; López-Bellido, F.; Carnicer, A.; Alcalde-Morano, V. Phytoremediation of mercury-polluted soils using crop plants. Fresen. Environ. Bull. 2003, 12, 967–971.
  • Rodríguez, L.; Rincon, J.; Asencio, I.; Rodriguez-Castellanos, L. Capability of selected crop plants for shoot mercury accumulation from polluted soils: Phytoremediation perspectives., Int. J. Phytoremed. 2007, 9, 1–13.
  • Liu, Y.R.; Zheng, Y.M.; Shen, J.P.; Zhang, L.M.; He, J.Z. Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environ. Sci. Pollut. Res. 2010, 17, 1237–1244.
  • Mathema, V.B.; Thakuri, B.C.; Sillanpää, M. Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Arch. Microbiol. 2011, 193, 837–844.
  • Rasmussen, L.D.; Zawadsky, C.; Binnerup, S.J.; Oregaard, G.; Sorensen, S.J.; Kroer, N. Cultivation of hard to culture subsurface mercury resistant bacteria and discovery of new merA gene sequences. Appl. Environ. Microbiol. 2008, 74, 3795–3803.
  • Summers, A.O.; Silver, S. Microbial transformations of metals. Annu. Rev. Microbiol. 1978, 32, 367—672.
  • Jones, D.L. Organic acids in the rhizosphere—a critical review. Plant Soil 1998, 205, 25–44.
  • Wenzel, W.W.; Wieshammer, G.; Fitz, W.J.; Puschenreiter, M. Novel rhizobox design to assess rhizosphere characteristics at high spatial resolution. Plant Soil 2001, 237, 37–45.
  • Dessureault-Rompré, J.; Luster, J.; Schulin, R.; Tercier-Waeber, M.L.; Nowack, B. Decrease of labile Zn and Cd in the rhizosphere of hyperaccumulating Thlaspi caerulescens with time. Environ. Pollut. 2010, 158, 1955–1962.
  • Kim, K.R.; Owens, G.; Kwon, S. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: A rhizobox study. J. Environ. Sci. 2010, 22, 98–105.
  • Yang, W.; Zhang, T.; Li, S.; Ni, W. Metal removal from and microbial property improvement of a multiple heavy metals contaminated soil by phytoextraction with a cadmium hyperaccumulator Sedum alfredii H. J. Soils Sedim. 2014, 14, 1385–1396.
  • Liu, D.; Fang, S.; Tian, Y.; Chang, S.X. Nitrogen transformations in the rhizosphere of different tree types in a seasonally flooded soil. Plant Soil Environ. 2014, 60, 249–254.
  • Puglisi, E.; Pascazio, S.; Suciu, N.; Cattani, I.; Fait, G.; Spaccini, R.; Crecchio, C.; Piccolo, A.; Trevisan, M. Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits. J. Geochem. Explor. 2013, 129, 82–94.
  • Schenck zu Schweinsberg-Mickan, M.; Jörgensen, R.G.; Müller, T. Rhizodeposition: Its contribution to microbial growth and carbon and nitrogen turnover within the rhizosphere. J. Plant Nutr. Soil Sci. 2012, 175, 750–760.
  • Becerra-Castro, C.; Kidd, P.; Kuffner, M.; Prieto-Fernández, Á.; Hann, S.; Monterroso, C.; Sessitsch, A.; Wenzel, W.; Puschenreiter, M. Bacterially induced weathering of ultramafic rock and its implications for phytoextraction. Appl. Environ. Microbiol. 2013, 79, 5094–5103.
  • Brennan, A.; Moreno Jiménez, E.; Puschenreiter, M.; Alburquerque, J.A.; Switzer, C. Effects of biochar amendment on root traits and contaminant availability of maize plants in a copper and arsenic impacted soil. Plant Soil 2014, 379, 351–360.
  • Motaghian, H.R.; Hosseinpur, A.R. Effect of wheat (Triticum aestivum L.) rhizosphere and sewage sludge application on zinc desorption with dilute citric acid. Arch. Agron. Soil Sci. 2014, 60, 907–923.
  • Gartler, J.; Wimmer, B.; Soja, G.; Reichenauer, T.G. Effects of rapeseed oil on the rhizodegradation of polyaromatic hydrocarbons in contaminated soil. Int. J. Phytoremed. 2014, 16, 671–683.
  • Xie, X.; Liao, M.; Fang, S.; Peng, Y.; Yang, J.; Chai, J. Spacial characteristics of pyrene degradation and soil microbial activity with the distance from the ryegrass (Lolium perenne L.) root surface in a multi-interlayer rhizobox. J. Hazard. Mat. 2012, 213–214, 156–160.
  • Zhong, Y.; Wang, J.; Song, Y.Z.; Liang, Y.T.; Li, G.H. Microbial community and functional genes in the rhizosphere of alfalfa in crude oil-contaminated soil. Front Environ. Sci. Eng. 2012, 6, 797–805.
  • Ettler, V.; Rohovec, J.; Navrátil, T.; Mihaljevič, M. Mercury distribution in soil profiles polluted by lead smelting. Bull. Environ. Contam. Toxicol. 2007, 78, 13–17.
  • Coufalík, P.; Zvěřina, O.; Komárek, J. Determination of mercury species using thermal desorption analysis in AAS. Chem. Pap. 2014, 68, 427–434.
  • Anonymous. Public notice No. 13/1994, regulating some details concerning the preservation of agricultural lands available. Czech Ministry of the Environment: Prague, 1994.
  • Mehlich, A. Mehlich 3 Soil test extractant: A modification of Mehlich 2 extractant, Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416.
  • Fitz, W.J.; Wenzel, W.W.; Wieshammer, G.; Istenič, B. Microtome sectioning causes artifacts in rhizobox experiments. Plant Soil 2003, 256, 455–462.
  • Quevauviller, P.; Ure, A., Muntau, H.; Griepink, B. Improvement of analytical measurements within the BCR – program – Single and sequential extraction procedures applied to soil and sediment analysis. Int. J. Environ. Anal. Chem. 1993, 51, 129–134.
  • Coufalík, P.; Krásenský, P.; Dosbaba, M.; Komárek, J. Sequential extraction and thermal desorption of mercury from contaminated soil and tailings from Mongolia. Cent. Eur. J. Chem. 2012, 10, 1565–1573.
  • Ságová-Marečková, M.; Čermák, L.; Novotná, J.; Plháčková, K.; Forstová, J.; Kopecký, J. Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Appl. Environ. Microbiol. 2008, 74, 2902–2907.
  • Baldrian, P.; Kolařík, M.; Štursová, M.; Kopecký, J.; Valášková, V.; Větrovský, T.; Zifcakova, L.; Šnajdr, J.; Ridl, J.; Vlček, Č.; Vořišková, J. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012, 6, 248–258.
  • Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; Gormley, N.; Gilbert, J.A.; Smith, G.; Knight, R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624.
  • Větrovský, T.; Baldrian, P. Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol. Fertil. Soils 2013, 49, 1027–1037.
  • Edgar, R.C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998.
  • Bloom, N.S.; Preus, E.; Katon, J.; Hiltner, M. Selective extractions to assess the biogeochemically relevant fraction of inorganic mercury in sediments and soils. Anal. Chim. Acta 2003, 479, 233–248.
  • Millán, R.; Sanchez, D.M.; Quejido, A.J.; Fernandez, M. Mercury and trace element fractionation in Almaden soils by application of different sequential extraction procedures. Anal. Bioanal. Chem. 2005, 381, 1507–1513.
  • Li, Y.; Sun, H., Li, H.; Yang, L.; Ye, B.; Wang, W. Dynamic changes of rhizosphere properties and antioxidant enzyme responses of wheat plants (Triticum aestivum L.) grown in mercury-contaminated soils. Chemosphere 2013, 93, 972–977.
  • Reis, A.T.; Rodrigues, S.M.; Davidson, C.M.; Pereira, E.; Duarte, A.C. Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere 2010, 81, 1369–1377.
  • Covelli, S.; Acquavita, A.; Piani, R., Predonzani, S.; De Vittor, C. Recent contamination of mercury in an estuarine environment (Marano lagoon, Northern Adriatic, Italy). Estuar. Coast. Shelf. Sci. 2009, 82, 273–284.
  • Remy, S.; Prudent, P.; Probst, J.L. Mercury speciation in soils of the industrialised Thur River catchment (Alsace, France). Appl. Geochem. 2006, 21, 1855–1867.
  • Bloom, S.; Porcella, D.B. Less mercury. Nature 1994, 367, 694.
  • Hintelmann, H.; Hempel, M.; Wilken, R.D. Observation of unusual organic mercury species in soils and sediments of industrially contaminated sites. Environ. Sci. Technol. 1995, 29, 1845–1850.
  • Gabriel, M.C.; Williamson, D.G. Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environ. Geochem. Health 2004, 26, 421–434.
  • Cabral, L.; Giovanello, P.; Gianello, C.; Bento Menezes, F.; Andreazza, R.; Camargo, F.A.O. Isolation and characterization of bacteria from mercury contaminated sites in Rio Grande do Sul, Brazil, and assesment of methylmercury removal capability of a Pseudomonas putina V1 strain. Biodegradation 2013, 24, 319–331.
  • Gupta, S.; Goyal, R.; Nirwan, J.; Cameotra, S.S.; Tejoprakash, N. Biosequestration, transformation, and volatilization of mercury by Lysinibacillus fusiformis isolated from industrial effluent. J. Microbiol. Biotechnol. 2012, 22, 684–689.
  • Takeuchi, F.; Iwahori, K.; Kamimura, K.; Hegishi, A.; Maeda, T.; Sugio, T. Volatilization of mercury under acidic conditions from mercury-polluted soil by a mercury resistant Acithiobacillus ferrooxidans SUG 2–2. Biosci. Biotechnol. Biochem. 2001, 65, 1981–1986.
  • Karunasagar, D.; Arunachalam, J.; Rashmi, K.; Naveena Lavanya Latha, J.; Maruthi Mohan, P. Biosorption of inorganic and methyl mercury by a biosorbent from Aspergillus niger. J. Microbiol. Biotechnol. 2003, 19, 291–295.
  • Grassi, S.; Netti, R. Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany-Italy). J. Hydrol. 2000, 238, 198–211.
  • Sorkhoh, N.A.; Ali, N.; Dashti, N.; Al-Mailem, D.M.; Al-Awadhi, H.; Eliyas, M.; Radwan, S.S. Soil bacteria with the combined potential for oil utilization, nitrogen fixation, and mercury resistance. Int. Biodeter. Biodegrad. 2010, 64, 226–231.
  • Winch, S.; Mills, H.J.; Kostka, J.E.; Fortin, D.; Lean, D.R.S. Identification of sulfate-reducing bacteria in methylmercury contaminated mine tailings by analysis of SSU rRNA genes. FEMS Microbiol. Ecol. 2009, 68, 94–107.
  • Daane, L.L.; Harjono, I.; Barns, S.M.; Launen, L.A.; Palleroni, N.J.; Haggblom M.M. PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int. J. Syst. Evol. Microbiol. 2002, 52, 131–139.
  • Cursino, L., Mattos, S.V.M.; Azevedo, V.; Galarza, F.; Bucker, D.H., Chartone-Souza, E., Nascimento, A.M.A. Capacity of mercury volatilization by mer (from Escherichiacoli) and glutathione S-transferase (from Schistosoma mansoni) genes cloned in Escherichia coli. Sci. Total Environ. 2000, 261, 109–113.
  • Dash, H.R.; Das, S. Bioremediation of mercury and the importance of bacterial mer genes. Int. Biodeter. Biodegr. 2012, 75, 207–213.
  • Glick, B.R. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 2003, 174, 383–393.
  • Zhang, W.; Chen, L.; Liu, D. Characterization of a marine - isolated mercury - resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Appl. Microbiol. Biotechnol. 2012, 93, 1305–1314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.