Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 5
390
Views
5
CrossRef citations to date
0
Altmetric
ARTICLES

Modeling organic matter and nitrogen removal from domestic wastewater in a pilot-scale vertical subsurface flow constructed wetland

, , &
Pages 414-424 | Received 07 Aug 2015, Published online: 28 Jan 2016

References

  • Amit, S.; Rupali, G. Developments in wastewater treatment methods. Desalination 2004, 167, 55–63.
  • Leitão, R.C.; Van Haandel, A.C.; Zeeman, G.; Lettinga, G. The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review. Bioresour. Technol. 2006, 97, 1105–1118.
  • Gopala Krishna, G.V.T.; Kumar, P.; Kumar, P. Treatment of low-strength soluble wastewater using an anaerobic baffled reactor (ABR). J. Environ. Manage. 2009, 90, 166–176.
  • Feng, H.; Hu, L.; Mahmood, Q.; Fang, C.; Qiu, C.; Shen, D. Effects of temperature and feed strength on a carrier anaerobic baffled reactor treating dilute wastewater. Desalination 2009, 239, 111–121.
  • Bustillo-Lecompte, C.F.; Knight, M.; Mehrvar, M. Assessing the performance of UV/H2O2 as a pretreatment process in TOC removal of an actual petroleum refinery wastewater and its inhibitory effects on activated sludge. Can. J. Chem. Eng. 2015, 93(5), 798–807.
  • Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: a review on trends and advances. J. Environ. Manage. 2015, 161, 287–302.
  • Chan, Y.J.; Chong, M.F.; Law, C.L.; Hassell, D. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 2009, 155, 1–18.
  • Oller, I.; Malato, S.; Sanchez-Perez, J. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Sci. Total Environ. 2011, 409(20), 4141–4166.
  • Bustillo-Lecompte, C.F.; Mehrvar, M.; Quiñones-Bolaños, E. Combined anaerobic-aerobic and UV/H2O2 processes for the treatment of synthetic slaughterhouse wastewater. J. Environ. Sci. Health A 2013, 48(9), 1122–1135.
  • Bustillo-Lecompte, C.F.; Mehrvar, M.; Quiñones-Bolaños, E. Cost-effectiveness analysis of TOC removal from slaughterhouse wastewater using combined anaerobic-aerobic and UV/H2O2 processes. J. Environ. Manage. 2014, 134, 145–152.
  • Zhang, D.; Gersberg, R.; Keat, T. Constructed wetlands in China. Ecol. Eng. 2009, 35(10), 1367–1378.
  • Kumar, J.L.G.; Zhao, Y.Q. A review on numerous modeling approaches for effective, economical and ecological treatment wetlands. J. Environ. Manage. 2011, 92(3), 400–406.
  • Korkusuz, E.; Beklioǧlu, M.; Demirer, G. Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey. Ecol. Eng. 2005, 24(3), 187–200.
  • Gómez, J.; Erazo, J.; Rajas, J.; Cuervo, D. Septic Tank (ST)-Up Flow Anaerobic Filter (UFAF)-Subsurface Flow Constructed Wetland (SSF-CW) systems aimed at wastewater treatment in small localities in Colombia. Rev. Técn. Fac. Ingr. Univ. Zulia. 2006, 29(3), 269–281.
  • Cao, L.; Guisen, D.; Bingbin, H.; Qingyi, M.; Huimin, L.; Zijian, W.F. Biodiversity and water quality variations in constructed wetland of Yongding River system. Acta Ecol. Sin. 2007, 27(9), 3670–3677.
  • Chan, S.; Tsang, Y.; Chua, H.; Sin, S.; Cui, L. Performance study of vegetated sequencing batch coal slag bed treating domestic wastewater in suburban area. Bioresour. Technol. 2008, 99(9), 3774–3781.
  • Chen, Z.M.; Chen, B.; Zhou, J.B.; Li, Z.; Zhou, Y.; Xi, X.R.; Lin, C.; Chen, G.Q. A vertical subsurface-flow constructed wetland in Beijing. Commun. Nonlinear Sci. Numer. Simul. 2008, 13(9), 1986–1997.
  • Li, L.; Li, Y.; Biswas, D.; Nian, Y.; Jiang, G. Potential of constructed wetlands in treating the eutrophic water: Evidence from Taihu Lake of China. Bioresour. Technol. 2008, 99(6), 1656–1663.
  • Tang, X.; Huang, S.; Scholz, M.; Li, J. Nutrient removal in pilot-scale constructed wetlands treating eutrophic river water: Assessment of plants, intermittent artificial aeration and polyhedron hollow polypropylene balls. Water Air Soil Pollut. 2009, 197(1–4), 61–73.
  • Zurita, F.; De Anda, J.; Belmont, M. Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol. Eng. 2009, 35(5), 861–869.
  • Yalcuk, A.; Pakdil, N.; Turan, S. Performance evaluation on the treatment of olive mill waste water in vertical subsurface flow constructed wetlands. Desalination 2010, 262(1–3), 209–214.
  • Serrano, L.; de la Varga, D.; Ruiz, I.; Soto, M. Winery wastewater treatment in a hybrid constructed wetland. Ecol. Eng. 2011, 37(5), 744–753.
  • Saeed, T.; Afrin, R.; Muyeed, A., Sun, G. Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh. Chemosphere 2012, 88(9), 1065–1073.
  • Borin, M.; Politeo, M.; De Stefani, G. Performance of a hybrid constructed wetland treating piggery wastewater. Ecol. Eng. 2013, 51, 229–236.
  • Comino, E.; Riggio, V.; Rosso, M. Constructed wetland treatment of agricultural effluent from an anaerobic digester. Ecol. Eng. 2013, 54, 165–172.
  • Mietto, A.; Borin, M. Performance of two small subsurface flow constructed wetlands treating domestic wastewaters in Italy. Environ. Technol. 2013, 34(9), 1085–1095.
  • Sharma, P.; Takashi, I.; Kato, K.; Ietsugu, H.; Tomita, K.; Nagasawa, T. Seasonal efficiency of a hybrid sub-surface flow constructed wetland system in treating milking parlor wastewater at northern Hokkaido. Ecol. Eng. 2013, 53, 257–266.
  • Aluko, O.O.; Sridhar, M. Evaluation of effluents from bench-scale treatment combinations for landfill leachate in Ibadan, Nigeria. Waste Manage. Res. 2014, 32(1), 70–78.
  • Gao, J., Wang, W., Guo, X., Zhu, S., Chen, S., Zhang, R. Nutrient removal capability and growth characteristics of Iris sibirica in subsurface vertical flow constructed wetlands in winter. Ecol. Eng. 2014, 70, 351–361.
  • Guo, Y.-M.; Liu, Y.-G.; Zeng, G.-M.; Hu, X.-J.; Xu, W.-H.; Liu, Y.-Q.; Liu, S.-M.; Sun, H.-S.; Ye, J.; Huang, H.-J. An integrated treatment of domestic wastewater using sequencing batch biofilm reactor combined with vertical flow constructed wetland and its artificial neural network simulation study. Ecol. Eng. 2014, 64, 18–26.
  • Pérez, M.M.; Hernández, J.M.; Bossens, J.; Jiménez, T.; Rosa, E.; Tack, F. Vertical flow constructed wetlands: kinetics of nutrient and organic matter removal. Water Sci. Technol. 2014, 70(1), 76–81.
  • Shehzadi, M.; Afzal, M.; Khan, M.U.; Islam, E.; Mobin, A.; Anwar, S.; Khan, Q.M. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res. 2014, 58, 152–159.
  • Singh, R.P.; Fu, D.; Fu, D.; Juan, H. Pollutant removal efficiency of vertical sub-surface upward flow constructed wetlands for highway runoff treatment. Arab. J. Sci. Eng. 2014, 39(5), 3571–3578.
  • Cui, L.; Ouyang, Y.; Yang, W.; Huang, Z.; Xu, Q.; Yu, G. Removal of nutrients from septic tank effluent with baffle subsurface-flow constructed wetlands. J. Environ. Manage. 2015, 153, 33–39.
  • Mietto, A.; Politeo, M.; Breschigliaro, S.; Borin, M. Temperature influence on nitrogen removal in a hybrid constructed wetland system in Northern Italy. Ecol. Eng. 2015, 75, 291–302.
  • Maier, U.; DeBiase, C.; Baeder -Bederski, O.; Bayer, P. Calibration of hydraulic parameters for large-scale vertical flow constructed wetlands. J. Hydrol. 2009, 369(3–4), 260–273.
  • Giraldi, D.; de Michielli Vitturi, M.; Iannelli, R. FITOVERT: A dynamic numerical model of subsurface vertical constructed wetlands. Environ Model. Softw. 2010, 25(5), 633–640.
  • Zhang, T.; Xu, D.; He, F.; Zhang, Y.; Wu, Z. Application of constructed wetland for water pollution control in China during 1990–2010. Ecol. Eng. 2012, 47, 189–197.
  • Naz, M.; Uyanik, S.; Yesilnacar, M.; Sahinkaya, E. Side-by-side comparison of horizontal subsurface flow and free water surface flow constructed wetlands and artificial neural network (ANN) modelling approach. Ecol. Eng. 2009, 35(8), 1255–1263.
  • Toscano, A.; Langerbraber, G.; Consoli, S.; Cirelli, G. Modelling pollutant removal in a pilot-scale two-stage subsurface flow constructed wetlands. Ecol. Eng. 2009, 35(2), 281–289.
  • Mayer, K.; Frind, E.; Blowes, D. Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 2002, 38(9), 13-1–13-21.
  • Langergraber, G.; Šimůnek, J. Modeling variably saturated water flow and multicomponent reactive transport in constructed wetlands. Vadose Zone J. 2005, 4(4), 924–938.
  • Šimůnek, J.; Van Genuchten, M.; Šejna, M. Modeling subsurface water flow and solute transport with HYDRUS and related numerical software packages. In Numerical Modelling of Hydrodynamics for Water Resources; Garcia-Navarro and Playán, Eds. Proceedings of the International Workshop on Numerical Modelling of Hydrodynamics for Water Resources, 2008, 95–114.
  • Mena, J.; Villasenor, J.; Fernández, F.J.; Gomez, R.; De Lucas, A. Hydraulic modelling of horizontal-subsurface flow constructed wetlands: Influence of operation time and plant species. Int. J. Environ. Anal. Chem. 2011, 91(7–8), 786–800.
  • Huang, G.; Yeh, G.-T. Integrated modeling of groundwater and surface water interactions in a manmade wetland. Terr. Atmos. Ocean. Sci. 2012, 23(5), 501–511.
  • Galanopoulos, C.; Sazakli, E.; Leotsinidis, M.; Lyberatos, G. A pilot-scale study for modeling a free water surface constructed wetlands wastewater treatment system. J. Environ. Chem. Eng. 2013, 1(4), 642–651.
  • Samsó, R.; Garcia, J. BIO_PORE, a mathematical model to simulate biofilm growth and water quality improvement in porous media: application and calibration for constructed wetlands. Ecol. Eng. 2013, 54, 116–127.
  • Chang, N.-B.; Wanielista, M.P.; Xuan, Z. Tracer-based system dynamic modeling for designing a subsurface upflow wetland for nutrient removal. Dev. Environ. Model. 2014, 26, 625–649.
  • Chouinard, A., Balch, G.C., Wootton, B.C., Jørgensen, S.E., Anderson, B.C. SubWet 2.0. modeling the performance of treatment wetlands. Dev. Environ. Model. 2014, 26, 519–537.
  • Huang, J.J.; Gao, X.; Balch, G.; Wootton, B.; Jørgensen, S.E.; Anderson, B. Modelling of vertical subsurface flow constructed wetlands for treatment of domestic sewage and stormwater runoff by subwet 2.0. Ecol. Eng. 2015, 74, 8–12.
  • Rajabzadeh, A.R.; Legge, R.L.; Weber, K.P. Multiphysics modelling of flow dynamics, biofilm development and wastewater treatment in a subsurface vertical flow constructed wetland mesocosm. Ecol. Eng. 2015, 74, 107–116.
  • Shaw, J., Bosch, D., West, L., Truman, C.C.; Radcliffe, D. Lateral flow in loamy to sandy Kandiudults of the Upper Coastal Plain of Georgia (USA). Geoderma 2001, 99(1–2), 1–25.
  • Healy, R.; Essaid, H. VS2DI: Model use, calibration, and validation. T. ASABE. 2012, 55(4), 1249–1260.
  • McCord, J.; Gotway, C.; Conrad, S. Impact of geologic heterogeneity on recharge estimation using environmental tracers: Numerical modeling investigation. Water Resour. Res. 1997, 33(6), 1229–1240.
  • American Society for Testing Materials (ASTM). ASTM D421-85 Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants; ASTM International: West Conshohocken, PA, 2007.
  • Instituto Nacional de Vías (INVIAS). Especificaciones Generales de Construcción y Normas de Ensayo para Materiales de Carreteras; Instituto Nacional de Vías (INVIAS): Cartagena, Colombia, 2013. Available at http://www.invias.gov.co/index.php/documentos-tecnicos-izq/doc_download/1039-especificaciones-generales-de-construccion-y-normas-de-ensayo-para-materiales-de-carreteras (accessed Jun 2015).
  • American Public Health Association (APHA). Standards Methods for the Examination of Water and Wastewater. Water Environment Federation, American Water Association, American Public Health Association: Washington, DC, 1998.
  • Saeed, T.; Sun, G. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands. Water Res. 2011, 45(10), 3137–3152.
  • Richards, L.A. Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1931, 1(5), 318–333.
  • Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12(3), 513–522.
  • van Genuchten, M. Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44(5), 892–898.
  • Lappala, E.G.; Healy, R.W.; Weeks, E.P. Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media, U.S. Geological Survey Water-Resources Investigations Report 83–4099; U.S. Geological Survey: Denver, CO, 1987; 1–184.Available at http://pubs.usgs.gov/wri/1983/4099/report.pdf (accessed Jun 2015).
  • Clement, T.P.; Sun, Y.; Hooker, B.S.; Petersen, J.N. Modeling multispecies reactive transport in ground water. Ground Water Monit. Remediat. 1998, 18(2), 79–92.
  • Ren, Z.; Yang, Y.; Zhang, W.; Liu, J.; Wang, H. Modeling study on the mass transfer of hollow fiber renewal liquid membrane: Effect of the hollow fiber module scale. J. Membr. Sci. 2013, 439, 28–35.
  • Wang, W.; Dai, Z.; Li, J.; Zhou, L. A hybrid Laplace transform finite analytic method for solving transport problems with large Peclet and Courant numbers. Comput. Geosci. 2012, 49, 182–189.
  • Porter, L.; Ritzi, R.; Mastera, L.; Dominic, D.; Ghanbarian-Alavijeh, B. The kozeny-carman equation with a percolation threshold. Ground Water 2013, 51(1), 92–99.
  • Idris, A.; Abdullah, A.G.; Hung, Y.-T.; Wang, L.K. Environmental bioengineering. Chapter 10. Wetlands for Wastewater Treatment. In Handbook of Environmental Engineering; L. K. Wang, J.-H. Tay, S. T.-L. Tay, Y.-T. Hung, Eds.; Springer: New York, 2010; Vol. 11, 317–350.
  • Schuetz, T.; Weiler, M.; Lange, J. Multitracer assessment of wetland succession: Effects on conservative and nonconservative transport processes. Water Resour. Res. 2012, 48(6), art. no. W06538, 1–15.
  • Peña-Varón, M. R., Van Ginneken, M., Madera, C. A. Humedales de flujo sub superficial: una alternativa natural para el tratamiento d elas aguas residuales domésticas. Ingeniería y Competitividad. 2003, 5(1), 27–35.
  • Metcalf & Eddy. Wastewater Engineering: Treatment and Reuse, 4th Ed.; McGraw-Hill: Dubuque, IA, 2002.
  • Boethling, R.S.; Alexander, M. Effect of concentration of organic chemicals on their biodegradation by natural microbial communities. Appl. Environ. Microb. 1979, 37(6), 1211–1216.
  • Bustillo-Lecompte, C.F.; Mehrvar, M. Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. J. Environ. Manage. 2015, 161, 287–302.
  • Foladori, P.; Bruni, L.; Tamburini, S. Bacteria viability and decay in water and soil of vertical subsurface flow constructed wetlands. Ecol. Eng. 2015, 82, 49–56.
  • Asaeda, T.; Rashid, M.H.; Abu Bakar, R. Dynamic modelling of soil nitrogen budget and vegetation colonization in sediment bars of a regulated river. River Res. Appl. 2015, 31(4), 470–484.
  • Wankoa, A.; Tapiab, G.; Moséa, R.; Gregoireb, C. A new empirical law to accurately predict solute retention capacity within horizontal flow constructed wetlands. Ecol. Eng. 2011, 37, 636–643.
  • Białowiec, A.; Albuquerque, A.; Randerson, P.F. The influence of evapotranspiration on vertical flow subsurface constructed wetland performance. Ecol. Eng. 2014, 67, 89–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.