Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 6
213
Views
6
CrossRef citations to date
0
Altmetric
ARTICLES

Characterization of arsenite tolerant Halomonas sp. Alang-4, originated from heavy metal polluted shore of Gulf of Cambay

, , , &
Pages 478-486 | Received 21 Jul 2015, Published online: 11 Feb 2016

References

  • Mandal, K.; Joshi, H.V. Impact of ship-breaking activities on the coastal seawater at Alang, Gulf of Cambay, Gujarat (India). In Pollution in urban industrial environment; Das, S.N., Swamy, Y.V., Rao, K.K., Mishra, V.N., Eds.; Allied Publisher Pvt. Ltd.: India, 2005; 149–155.
  • Sharma, A.; Gontia, I.; Agarwal, P.K., Jha, B. Accumulation of heavy metals and its biochemical responses in Salicornia brachiata, an extreme halophyte. Mar. Biol. Res. 2010, 6, 511–518.
  • Neff, J.M. Ecotoxicology of arsenic in the marine environment. Environ. Toxicol. Chem. 1997, 16, 917–927.
  • Rosen, B.P. Biochemistry of arsenic detoxification. FEBS Lett. 2002, 529, 86–92.
  • Johnson, B; DeRosa, C. Chemical mixtures released from hazardous waste sites: implications for health risk assessment. Toxicology 1995, 105, 145–156.
  • Carbonell, A.A.; Aarabi, M.A.; Delaune, R.D.; Gambrell, R.P.; Patrick W.H. Jr., Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci. Tot. Environ. 1998, 217, 189–199.
  • Mateos, L.M.; Ordonez, E.; Latek, M.; Gill, J.A. Corynebacterium glutamicum as a model bacterium for bioremediation of arsenic. Intrnl. Microbiol. 2006, 9, 207–215.
  • Helleday, T.; Nilsson, R.; Jenssen, D. Arsenic(III) and heavy metal ions induce intrachromosomal homologous recombination in the hprt gene of V79 Chinese hamster cells. Environ. Mol. Mutagen. 2000, 35, 114–122.
  • Storz, G.; Imlay, J.A. Oxidative stress. Curr. Opin. Microbiol. 1999, 2, 188–194.
  • Hanaoka, K.; Dote, Y.; Yosida, K.; Kaise, T.; Kuroiwa, T.; Maeda, S. Arsenic compounds accumulated in sedimentary microorganisms cultivated in media containing several arsenicals. Appl. Organomet. Chem. 1996, 10, 683–688.
  • Takeuchi, M.; Kawahata, H.; Guputa, L.P.; Kita, N.; Morishita, Y.; Ono, Y.; Komai, T. Arsenic resistance and removal by marine and non-marine bacteria. J. Biotechnol. 2007, 127, 434–442.
  • Chang, J.S.; Kim, Y.H.; Kim, K.W. The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold–silver mines in the Republic of Korea, Appl. Microbiol. Biotechnol. 2008, 80, 155–165.
  • Sambrook, J.; Russell, D. Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor: New York, 2001.
  • Aksornchu, P.; Prasertsan, P.; Sobhon, V. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil. Songklanakarin J. Sci. Technol. 2008, 30, 95–102.
  • Cai, L.; Liu, G.; Rensing, C.; Wang, G. Genes involved in arsenic transformation and resistance associated with different levels of arsenic contaminated soils. BMC Microbiol. 2009, 9, 4–16.
  • Drewniak, L.; Styczek, A.; Majder-Lopatka, M.; Sklodowska, A. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ. Poll. 2008, 156, 1069–1074.
  • Cummings, D.E.; Frank, C. Jr.; Scott, F.; Rosenzweig, R.F. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ. Sci. Technol. 1999, 33, 723–729.
  • Vyas, P.; Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 2009, 9, 174–189.
  • Kodaki, T.; Katagiri, F.; Asano, M.; Izui, K.; Katsuki, H. Cloning of phosphoenolpyruvate carboxylase gene from a cyanobacterium, Anacystis nidulans, in Escherichia coli. J. Biochem. 1985, 97, 533–539.
  • Serre, A. Citrate synthase; In: Methods in Enzymology; Lowenstein, J.M. Ed.; Academic Press: New York, NY; 1969, Vol. 13, pp. 3–11.
  • Buch, A.; Archana, G.; Naresh Kumar, G. Metabolic channeling of glucose towards gluconate in phosphatesolubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency, Res. Microbiol. 2008, 159, 635–642.
  • Srivastava, D.; Madamwar, D.; Subramanian, R.B. Pentavalent arsenate reductase activity in cytosolic fractions of Pseudomonas sp., isolated from arsenic-contaminated sites of Tezpur, Assam. Appl. Biochem. Biotechnol. 2010, 162, 766–779.
  • Mukhopadhyay, R.; Shi, J.; Rosen, B.P. Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J. Biol. Chem. 2000, 275, 21149–21157.
  • Anderson, G.L.; Williams, J.; Hille, R. The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase, J. Biol. Chem. 1992, 267, 23674–23682.
  • Aebi, H. Catalase in vitro. Meth. Enzymol. 1984, 105, 121–126.
  • Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Pl. Cell Physiol. 1981, 22, 868–880.
  • Van Rossun, M.N.P.C.; Alberda, M.; Van Der Plas, L.H.W. Role of oxidative damage in tulip bulb scale micropropagation. Pl. Sci. 1997, 130, 207–216.
  • Constantine, N.; Stanley, K.R. Superoxide dismutases. Occurrence in higher plants. Pl. Physiol. 1977, 59, 309–314.
  • Schaedle, M.; Bassham, J.A. Chloroplast Glutathione reductase, Pl. Physiol. 1977, 59, 1011–1012.
  • Boyland, E.; Chasseaud, L.F. The role of glutathione and glutathione-s-transferase in mercaptic acid biosynthesis. Adv. Enzymol. 1969, 32, 173–219.
  • Peterson, G.L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 1977, 83, 346–356.
  • Chen, H.; Gross, J.A.; Karasov, W.H. Chronic exposure to pentavalent arsenic of larval leopard frogs (Rana pipiens): bioaccumulation and reduced swimming performance. Ecotoxicology 2009, 18, 587–593.
  • Liu, J.; Li, Y.; Zhang, B.; Cao, J.; Cao, Z.; Domagalski, J. Ecological risk of heavy metals in sediments of the Luan River source water. Ecotoxicology 2009, 18, 748–758.
  • Maher, W.; Barwick, M. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Environ. Res. 2003, 56, 471–502.
  • Kruger, M.C.; Bertin, P.N.; Heipieper, H.J.; Arsène-Ploetze, F. Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl. Microbiol. Biotechnol. 2013, 97, 3827–3841.
  • Kim, E.-H.; Rensing, C. Genome of Halomonas Strain GFAJ-1, a blueprint for fame or business as usual. J. Bacteriol. 2012, 194, 1643–1645.
  • Lin, Y.; Fan, H.; Hao, X.; Johnstone, L.; Hu, Y.; Wei, G.; Alwathnani, H.A.; Wang, G.; Rensing, C. Draft genome sequence of Halomonas sp. strain HAL1, a moderately halophilic arsenite-oxidizing bacterium isolated from gold mine soil. J. Bacteriol. 2012, 194, 199–200.
  • Kawata, Y.; Kawasaki, K.; Shigeri, Y. Draft genome sequence of Halomonas sp. strain KM-1, a moderately halophilic bacterium that produces the bioplastic poly(3-hydroxybutyrate). J. Bacteriol. 2012, 194, 2738–2739.
  • Sheik, C.S.; Mitchell, T.W.; Rizvi, F.Z.; Rehman, Y.; Faisal, M.; Hasnain, S.; McInerney, M.J.; Krumholz, L.R. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PloS one 2012, 7, e40059.
  • Sunita, M.S.L.; Prashant, S.; Chari, P.B.; Rao, S.N.; Balaravi, P.; Kishor, P.K. Molecular identification of arsenic-resistant estuarine bacteria and characterization of their ars genotype. Ecotoxicology 2012, 21, 202–212.
  • Liu, S.X.; Athar, M.; Lippai, I.; Waldren, C.; Hei, T.K. Induction of oxyradicals by arsenic: Implication for mechanism of genotoxicity, Proc. Natl. Acad. Sci. USA 2001, 98, 1643–1648.
  • Afkar, E.; Lisak, J.; Saltikov, C.; Basu, P.; Oremland, R.S.; Stolz, J.F. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol. Lett. 2003, 226, 107–112.
  • Kala, S.V.; Neely, M.W.; Kala, G.; Prater, C.I.; Atwood, D.W.; Rice, J.S.; Lieberman, M.W. The MRP2/cMOAT transporter and Arsenic-Glutathione complex formation are required for biliary excretion of arsenic. J. Biol. Chem. 2000, 275, 33404–33408.
  • Styblo, M.; Seves, S.V.; Cullen, W.R.; Thomas, D.J. Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem. Res. Toxicol. 1997, 10, 27–33.
  • Lundberg, B.; Wolf, R.E.; Dinauer, M.; Xu, Y.; Fang, F. Glucose 6-phosphate dehydrogenase is required for Salmonella typhimurium virulence and resistance to reactive oxygen and nitrogen intermediates. Infect. Immuno. 1999, 65, 5371–5375.
  • Angelova, B.; Pashova, S.B.; Spasova, B.K.; Vassilev, S.V.; Slokoska, L.S. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol. Res. 2005, 109, 150–158.
  • Hamel D.; Appanna, V.D. Modulation of TCA cycle enzymes and aluminum stress in Pseudomonas fluorescens. J. Inorg. Biochem. 2001, 87, 1–8.
  • Kostadinova, N.; Vassilev, S.; Spasova, B.; Angelova, M. Cold stress in Antarctic fungi targets enzymes of the glycolytic pathway and tricarboxylic acid cycle. Biotechnol. Biotechnol. Equip. 2011, 25, 50–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.