Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 6
347
Views
29
CrossRef citations to date
0
Altmetric
ARTICLES

Hexavalent chromium removal and bioelectricity generation by Ochrobactrum sp. YC211 under different oxygen conditions

, , , , , , , & show all
Pages 502-508 | Received 12 Sep 2015, Published online: 18 Feb 2016

References

  • Thacker, U.; Madamwar, D. Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J. Microbiol. Biotechnol. 2005, 21, 891–899.
  • Qamar, M.; Gondal, M.A.; Yamani, Z.H. Synthesis of nanostructured NiO and its application in laser-induced photocatalytic reduction of Cr(VI) from water. J. Mol. Catal. A-Chem. 2011, 341, 83–88.
  • Bachate, S.P.; Nandre, V.S.; Ghatpande, N.S.; Kodam, K.M. Simultaneous reduction of Cr(VI) and oxidation of As(III) by Bacillus firmus TE7 isolated from tannery effluent. Chemosphere 2013, 90, 2273–2278.
  • Barrera-Diaza, C.E.; Lugo-Lugo, V.; Bilyeu, B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater. 2012, 223–224, 1–12
  • Meichtry, J.M.; Brusa, M.; Mailhot, G.; Grela, M.A.; Litter, M.I. Heterogeneous photocatalysis of Cr(VI) in the presence of citric acid over TiO2 particles: Relevance of Cr(V)–citrate complexes. Appl. Catal. B: Environ. 2007, 71, 101–107.
  • Merdoud, O.; Akretche, D.E. Electroremediation of an industrial area contaminated by chromium. J. Environ. Sci. Health A 2008, 43, 866–870.
  • Abdel-Fattah, T.M.; Mahmoud, M.E.; Osmam, M.M.; Ahmed, S.B. Magnetically active biosorbent for chromium species removal from aqueous media. J. Environ. Sci. Health A 2014, 49, 1064–1076.
  • Shakoori, A.R.; Makhdoom, M.; Haq, R.U. Hexavalent chromium reduction by a dichromate-resistant gram-positive bacterium isolated from effluents of tanneries. Appl. Microbiol. Biotechnol. 2000, 53, 348–351.
  • Silver, S.; Phung, L.T. A bacterial view of the periodic table: Genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol. 2005, 32, 587–605.
  • Guha, H.; Jayachandran, K.; Maurrasse, F. Microbiological reduction of chromium(VI) in presence of pyrolusite-coated sand by Shewanella algae Simidu ATCC 55627 in laboratory column experiments. Chemosphere 2003, 52, 175–183.
  • Thacker, U.; Parikh, R.; Shouche, Y.; Madamwar, D. Hexavalent chromium reduction by Providencia sp. Process Biochem. 2006. 41, 1332–1337.
  • Zhu, W.; Chai, L.; Ma, Z.; Xiao, H.; Zhao, K. Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. Strain Ch1. Microbiol. Res. 2008, 163, 616–623.
  • Sultan, S.; Hasnain, S. Chromium(VI) reduction by cell free extract of Ochrobactrum anthropi isolated from tannery effluent. Bull. Environ. Contam. Toxicol. 2012, 89, 152–157.
  • Xu, F.; Ma, T.; Zhou, L.; Hu, Z.; Shi, L. Chromium isotopic fractionation during Cr(VI) reduction by Bacillus sp. under aerobic conditions. Chemosphere 2015, 130, 46–51.
  • Rahman, A.; Nahar, N.; Nawani, N.N.; Jass, J.; Hossain, K.; Saud, Z.A.; Saha, A.K.; Ghosh, S.; Olsson, B.; Mandal, A. Bioremediation of hexavalent chromium (VI) by a soil-borne bacterium, Enterobacter cloacae B2-DHA. J. Environ. Sci. Health A 2015, 50, 1136–1147.
  • Pal, A.; Paul, A.K. Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiol. Res. 2004, 159, 347–354.
  • Ozturk, S.; Kaya, T.; Aslim, B.; Tan, S. Removal and reduction of chromium by Pseudomonas spp. and their correlation to rhamnolipid production. J. Hazard. Mater. 2012, 231–232, 64–69.
  • Das, S.; Mishra, J.; Das, S.K.; Pandey, S.; Rao, D.S.; Chakraborty, A.; Sudarshan, M.; Das, N.; Thatoi, H. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 2014, 96, 112–121.
  • Sevda, S.; Sreekrishnan, T.T. Removal of organic matters and nitrogenous pollutants simultaneously from two different wastewaters using biocathode microbial fuel cell. J. Environ. Sci. Health A 2014, 49, 1265–1275.
  • Chen, Y.C.; Chen, T.Y.; Chung, Y.C. A comparison of bioelectricity in microbial fuel cells with aerobic and anaerobic anodes. Environ. Technol. 2014, 35, 286–293.
  • Chachaty, E.; Saulnier, P. Isolating chromosomal DNA from bacteria. In: The Nucleic Acid Protocols Handbook Vol 1., Rapley, R. Ed.; Humana: Totowa, NJ, 2000; 29–32.
  • Sandaa, R.A.; Enger, O.; Torsvik, V.Abundance and diversity of Archaea in heavy-metal-contaminated oils. Appl. Environ. Microbiol. 1999, 65, 3293–3297.
  • Laxman, R.S.; More, S. Reduction of hexavalent chromium by Streptomyces griseus. Miner. Eng. 2002, 15, 831–837.
  • Srivastava, S.; Thakur, I.S. Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biol. Biochem. 2006, 38, 1904–1911.
  • Bhinde, J.V.; Dhakephalkar, P.K.; Paknikar, K.M. Microbiological process for the removal of Cr(VI) from chromate bearing cooling tower effluent. Biotechnol. Lett. 1996, 18, 667–672.
  • Mishra, R.R.; Dhal, B.; Dutta, S.K.; Dangar, T.K.; Das, N.N.; Thatoi, H.N. Optimization and characterization of chromium(VI) reduction in saline condition by moderately halophilic Vigribacillus sp. isolated from mangrove soil of Bhitarkanika, India. J. Hazard. Mater. 2012, 227–228, 219–226.
  • Cheung, K.H.; Gu, J.D. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: A review. Int. Biodeter. Biodegr. 2007, 59, 8–15.
  • Liu, Y.G.; Xu, W.H.; Zeng, G.M.; Li, X.; Gao, H. Cr(VI) reduction by Bacillus sp. isolated from chromium landfill. Process Biochem. 2006. 41, 1981–1986.
  • Srinath, T.; Verma, T.; Ramteke, P.W.; Garg, S.K. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 2002, 48, 427–435.
  • Megharaj, M.; Avudainayagam, S.; Naidu, R. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr. Microbiol. 2003, 47, 51–54.
  • Min, B.; Cheng, S.; Logan, B.E. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 2005, 39, 1675–1686.
  • Kim, M.S.; Cha, J.; Kim, D.H. Enhancing factors of electricity generation in a microbial fuel cell using Geobacter sulfurreducens. J. Microbiol. Biotechnol. 2012, 22, 1395–4000.
  • Zhang, J.; Burgess, J.G. Shewanella dovemarinesis sp. nov., a psychrotolerant bacterium isolated from Mid-Atlantic Ridge deep-sea sediments. Int. J. Syst. Evol. Microbiol. 2015, 65, 2882–2889. doi:10.1099/ijs.0.057125–0
  • Feng, C.; Li, J.; Qin, D.; Chen, L.; Zhao, F.; Chen, S.; Hu, H.; Yu, C.P. Characterization of exoelectrogenic bacteria Enterobacter strains isolated from a microbial fuel cell exposed to copper shock load. PLoS One. 2014, 9, e113379.
  • Huang, J.; Zhu, N.; Cao, Y.; Peng, Y.; Wu, P.; Dong, W. Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii isolated from anodic biofilm of a microbial fuel cell. Appl. Biochem. Biotechnol. 2015, 175, 1879–1891.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.