Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 3
745
Views
22
CrossRef citations to date
0
Altmetric
ARTICLES

Photolytic degradation of sulfamethoxazole and trimethoprim using UV-A, UV-C and vacuum-UV (VUV)

, &
Pages 292-300 | Received 03 Jul 2014, Published online: 16 Jan 2015

References

  • Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759.
  • Heberer, T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol. Lett. 2002, 131, 5–17.
  • Lode, H. Co-trimoxazole from the therapeutic viewpoint. Infection 1987, 15, S222–226.
  • Amyes, S.G.; Doherty, C.J.; Wonnacott, S. Trimethoprim and co-trimoxazole: a comparison of their use in respiratory tract infections. Scand. J. Infec. Dis. 1986, 18, 561–566.
  • Hughes, D.T.; Russell, N.J. The use of trimethoprim-sulfamethoxazole in the treatment of chest infections. Rev. Infect. Dis. 1982, 4, 528–532.
  • Kim, S.D.; Cho, J.; Kim, I.S.; Vanderford, B.J.; Snyder, S.A. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water. Res. 2007, 41, 1013–1021.
  • Brenner, C.G.; Mallmann, C.A.; Arsand, D.R.; Mayer, F.M.; Martins, A.F. Determination of sulfamethoxazole and trimethoprim and their metabolites in hospital effluent. CLEAN 2011, 39, 28–34.
  • Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211.
  • Godfrey, E.; Woessner, W.W.; Benotti, M.J. Pharmaceuticals in On-Site Sewage Effluent and Ground Water, Western Montana. Ground Water 2007, 45, 263–271.
  • Clara, M.; Strenn, B.; Gans, O.; Martinez, E.; Kreuzinger, N.; Kroiss, H. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water. Res. 2005, 39, 4797–4807.
  • Beltrán, F.J.; Aguinaco, A.; García-Araya, J.F.; Oropesa, A. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water. Res. 2008, 42, 3799–3808.
  • Abellán, M.N.; Bayarri, B.; Giménez, J.; Costa, J. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl. Catal. B-Environ. 2007, 74, 233–241.
  • Lopez, A.; Bozzi, A.; Mascolo, G.; Kiwi, J. Kinetic investigation on UV and UV/H2O2 degradations of pharmaceutical intermediates in aqueous solution. J. Photochem. Photobiol. A 2003, 156, 121–126.
  • Gonzalez, M.G.; Oliveros, E.; Wörner, M.; Braun, A.M. Vacuum-ultraviolet photolysis of aqueous reaction systems. J. Photoch. Photobio. C 2004, 5, 225–246.
  • Jakob, L.; Hashem, T.M.; Bürki, S.; Guindy, N.M.; Braun, A.M. Vacuum-ultraviolet (VUV) photolysis of water: oxidative degradation of 4-chlorophenol. J. Photoche,. Photobiol. A 1993, 75, 97–103.
  • Hart, E.J.; Anbar, M. The Hydrated electron; Wiley-Interscience, 1970.
  • Yoon, S.-H.; Lee, J.H.; Oh, S.; Yang, J.E. Photochemical oxidation of As(III) by vacuum-UV lamp irradiation. Water. Res. 2008, 42, 3455–3463.
  • Oppenländer, T.; Gliese, S. Mineralization of organic micropollutants (homologous alcohols and phenols) in water by vacuum-UV-oxidation (H2O-VUV) with an incoherent xenon-excimer lamp at 172 nm. Chemosphere 2000, 40, 15–21.
  • Han, W.; Zhang, P.; Zhu, W.; Yin, J.; Li, L. Photocatalysis of p-chlorobenzoic acid in aqueous solution under irradiation of 254 nm and 185 nm UV light. Water. Res. 2004, 38, 4197–4203.
  • Gonzalez, M.C.; Braun, A.M.; Prevot, A.B.; Pelizzetti, E. Vacuum-ultraviolet (VUV) photolysis of water: Mineralization of atrazine. Chemosphere 1994, 28, 2121–2127.
  • Kim, I.; Tanaka, H. Photodegradation characteristics of PPCPs in water with UV treatment. Environ. Int. 2009, 35, 793–802.
  • Köhler, C.; Venditti, S.; Igos, E.; Klepiszewski, K.; Benetto, E.; Cornelissen, A. Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment. J. Hazard. Mater. 2012, 239, 70–77.
  • Goldstein, S.; Rabani, J. The ferrioxalate and iodide–iodate actinometers in the UV region. J. Photochem. Photobiol. A 2008, 193, 50–55.
  • Kirk, A.; Namasivayam, C. Errors in ferrioxalate actinometry. Anal. Chem. 1983, 55, 2428–2429.
  • Glaze, W.H.; Lay, Y.; Kang, J.-W. Advanced oxidation processes. A kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation. Ind. Eng. Chem. Res. 1995, 34, 2314–2323.
  • Kang, J.-W.; Lee, K.-H. A kinetic model of the hydrogen peroxide/UV process for the treatment of hazardous waste chemicals. Environ. Eng. Sci. 1997, 14, 183–192.
  • Gao, R.; Stark, J.; Bahnemann, D.W.; Rabani, J. Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers. J. Photochem. Photobiol. A 2002, 148, 387–391.
  • Asmus, K.; Möckel, H.; Henglein, A. Pulse radiolytic study of the site of hydroxyl radical attack on aliphatic alcohols in aqueous solution. J. Phys. Chem. 1973, 77, 1218–1221.
  • Sun, L.; Bolton, J.R. Determination of the quantum yield for the photochemical generation of hydroxyl radicals in TiO2 suspensions. J. Phys. Chem. 1996, 100, 4127–4134.
  • Renew, J.E.; Huang, C.-H. Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography–electrospray mass spectrometry. J. Chromatogr. A 2004, 1042, 113–121.
  • Zhou, W.; Moore, D.E. Photosensitizing activity of the anti-bacterial drugs sulfamethoxazole and trimethoprim. J. Photochem. Photobiol. B 1997, 39, 63–72.
  • Zhou, W.; Moore, D.E. Photochemical decomposition of sulfamethoxazole. Int. J. Pharm. 1994, 110, 55–63.
  • Azrague, K.; Bonnefille, E.; Pradines, V.; Pimienta, V.; Oliveros, E.; Maurette, M.-T.; Benoit-Marquié, F. Hydrogen peroxide evolution during V-UV photolysis of water. Photochem. Photobiol. Sci. 2005, 4, 406–408.
  • Mezyk, S.P.; Neubauer, T.J.; Cooper, W.J.; Peller, J.R. Free-radical-induced oxidative and reductive degradation of sulfa drugs in water: absolute kinetics and efficiencies of hydroxyl radical and hydrated electron reactions. J. Phys. Chem. A 2007, 111, 9019–9024.
  • Behar, D.; Behar, B. Pulse radiolysis studies of aminobenzenesulfonates: formation of cation radicals. J. Phys. Chem. 1991, 95, 7552–7556.
  • Bonvin, F.; Omlin, J.; Rutler, R.; Schweizer, W.B.; Alaimo, P.J.; Strathmann, T.J.; McNeill, K.; Kohn, T. Direct photolysis of human metabolites of the antibiotic sulfamethoxazole: Evidence for abiotic back-transformation. Environ. Sci. Technol. 2012, 47, 6746–6755.
  • Boreen, A.L.; Arnold, W.A.; McNeill, K. Triplet-sensitized photodegradation of sulfa drugs containing six-membered heterocyclic groups: Identification of an SO2 extrusion photoproduct. Environ. Sci. Technol. 2005, 39, 3630–3638.
  • García-Galán, M.; Díaz-Cruz, M.S.; Barceló, D. Kinetic studies and characterization of photolytic products of sulfamethazine, sulfapyridine and their acetylated metabolites in water under simulated solar irradiation. Water. Res. 2012, 46, 711–722.
  • Luo, X.; Zheng, Z.; Greaves, J.; Cooper, W.J.; Song, W. Trimethoprim: Kinetic and mechanistic considerations in photochemical environmental fate and AOP treatment. Water Res. 2012, 46, 1327–1336.
  • Dedola, G.; Fasani, E.; Albini, A. The photoreactions of trimethoprim in solution. J. Photochem. Photobiol. A 1999, 123, 47–51.
  • Sirtori, C.; Agüera, A.; Gernjak, W.; Malato, S. Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Res. 2010, 44, 2735–2744.
  • Wang, D.; Li, Y.; Yang, M.; Han, M. Decomposition of polycyclic aromatic hydrocarbons in atmospheric aqueous droplets through sulfate anion radicals: An experimental and theoretical study. Sci. Total Environ. 2008, 393, 64–71.
  • Hayon, E.; Treinin, A.; Wilf, J. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5- radicals. J. Am. Chem. Soc. 1972, 94, 47–57.
  • Norman, R.O.C.; Storey, P.M.; West, P.R. Electron spin resonance studies. Part XXV. Reactions of the sulphate radical anion with organic compounds. J. Chem. Soc. 1970, 1087–1095.
  • Liang, C.; Wang, Z.-S.; Bruell, C.J. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 2007, 66, 106–113.
  • Peyton, G.R. The free-radical chemistry of persulfate-based total organic carbon analyzers. Mar. Chem. 1993, 41, 91–103.
  • Alapi, T.; Dombi, A. Comparative study of the UV and UV/VUV-induced photolysis of phenol in aqueous solution. J. Photochem. Photobiol. A 2007, 188, 409–418.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.