Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 4
256
Views
14
CrossRef citations to date
0
Altmetric
ARTICLES

Adsorptive removal of Cu(II) and Ni(II) from single-metal, binary-metal, and industrial wastewater systems by surfactant-modified alumina

&
Pages 385-395 | Received 30 Jul 2014, Published online: 27 Feb 2015

References

  • Lin, S.-H.; Juang, R.-S. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J. Hazard. Mater. 2002, B92, 315–326.
  • Moreno-Pirajan, J.C.; Garcia-Cuella V.S.; Giraldo, L. The removal and kinetic study of Mn, Fe, Ni and Cu ions from wastewater onto activated carbon from coconut shells. Adsorption 2011, 17, 505–514.
  • Ozcimen, D.; Ersoy-Mericboyu, A. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons. J. Hazard. Mater. 2009, 168, 1118–1125.
  • Popuri, S.R.; Vijaya, Y.; Boddu, V.M.; Abburi, K. Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresour. Technol. 2009, 100, 194–199.
  • Hu, J.; Chen, G.; Lo, I.M.C.; ASCE, M. Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J. Environ. Eng. 2006, 132, 709–715.
  • Das, B.; Mondal, N.K.; Bhaumik, R.; Roy, P.; Pal, K.C.; Das, C.S. Removal of copper from aqueous solution using alluvial soil of Indian origin: equilibrium, kinetic and thermodynamic study. J. Mater. Environ. Sci. 2013, 4, 392–408.
  • Gundogan, R.; Acemioglu, B.; Alma, M.H. Copper (II) adsorption from the aqueous solution by herbaceous peat. J. Coll. Interf. Sci. 2004, 269, 303–309.
  • Cho, H.; Oh, D.; Kim, K. A study on removal characteristics of heavy metals from aqueous solution by fly ash. J. Hazard. Mater. 2005, B127, 187–195.
  • Tong, K.S.; Kassim, M.J.; Azraa, A. Adsorption of copper ion from its aqueous solution by a novel biosorbent Uncaria gambir: equilibrium, kinetics and thermodynamic studies. Chem. Eng. J. 2011, 170, 145–153.
  • El-Ashtoukhy, E.-S.Z.; Amin, N.K.; Abdelwahab, O. Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination 2008, 223, 162–173.
  • Larous, S.; Meniai, A.-H.; Lehocine, M.B. Experimental study of the removal of copper from aqueous solution by adsorption using sawdust. Desalination 2005, 185, 483–490.
  • Awan, M.A.; Qazi, I.A.; Khalid, I. Removal of heavy metals through adsorption using sand. J. Environ. Sci. 2003, 15, 413–416.
  • Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Coll. Interf. Sci. 2004, 280, 309–314.
  • Wan, M.-W.; Kan, C.-C.; Rogel, B.D.; Dalida, M.L.P. Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydr. Polym. 2010, 80, 891–899.
  • Aydin, H.; Bulut, Y.; Yerlikaya, C. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage. 2008, 87, 37–45.
  • Gupta, V.K.; Jain, C.K.; Ali, I.; Sharma, M.; Saini, V.K. Removal of cadmium and nickel from wastewater using bagasse fly ash-a sugar industry waste. Water Res. 2003, 37, 4038–4044.
  • Onundi, Y.B.; Mamun, A.A.; Al Khatib, M.F.; Ahmed, Y.M. Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int. J. Environ. Sci. Technol. 2010, 7, 751–758.
  • Ho, Y.S.; Wase, D.A.J.; Forster, C.F. Batch nickel removal from aqueous solution by sphagnum moss peat. Water Res. 1995, 29, 1327–1332.
  • Meena, A.; Rajagopal, K.; Kiran, C.; Mishra, G.K. Removal of heavy metal ions from aqueous solutions using chemically (Na2S) treated granular activated carbon as an adsorbent. J. Sci. Ind. Res. 2010, 69, 449–453.
  • Shukla, S.S.; Yu, L.J.; Dorris, K.L.; Shukla, A. Removal of nickel from aqueous solutions by sawdust. J. Hazard. Mater. 2005, B121, 243–246.
  • Yasemin, B.; Zeki, T. Removal of heavy metals from aqueous solution by sawdust adsorption. J. Environ. Sci. 2007, 19, 160–166.
  • Torab-Mostaedi, M.; Ghassabzadeh, H.; Ghannadi-Maragheh, M.; Ahmadi, S.J.; Taheri, H. Removal of cadmium and nickel from aqueous solution using expanded perlite. Brazilian J. Chem. Eng. 2010, 27, 299–308.
  • Malkoc, E.; Nuhoglu, Y. Investigations of nickel(II) removal from aqueous solutions using tea factory waste. J. Hazard. Mater. 2005, B127, 120–128.
  • Argun, M.E.; Dursun, S.; Ozdemir, C.; Karatas, M. Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics. J. Hazard. Mater. 2007, 141, 77–85.
  • Shukla, S.R.; Pai, R.S. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresour. Technol. 2005, 96, 1430–1438.
  • Adak, A.; Bandyopadhyay, M.; Pal, A. Fixed bed column study for the removal of crystal violet (C.I. Basic Violet 3) dye from aquatic environment by surfactant-modified alumina. Dyes and Pigments 2006, 69, 245–251.
  • Somasundaran, P.; Fuerstenau, D.W. Mechanisms of alkyl sulfonate adsorption at the alumina-water interface. J. Phys. Chem. 1966, 70, 90–96.
  • Esumi, K.; Sakai, K.; Torigoe, K. Reexamination of 2-naphthol adsolubilization on alumina with sodium dodecyl sulfate adsorption. J. Coll. Interf. Sci. 2000, 224, 198–201.
  • Adak, A.; Bandyopadhyay, M.; Pal, A. Adsorption of anionic surfactant on alumina and reuse of the surfactant-modified alumina for the removal of crystal violet from aquatic environment. J. Environ. Sci. Health Part. A 2005, 40, 167–182.
  • Mohammadi, A.; Bina, B.; Ebrahimi, A.; Hajizadeh, Y.; Amin, M.M.; Pourzamani, H.; Effectiveness of nanozeolite modified by cationic surfactant in the removal of disinfection by-product precursors from water solution. Int. J. Environ. Health Eng. 2012, 1, 14–19.
  • Prarat, P.; Ngamcharussrivichai, C.; Khaodhiar, S.; Punyapalakul, P. Removal of haloacetonitriles in aqueous solution through adsolubilization process by polymerizable surfactant-modified mesoporous silica. J. Hazard. Mater. 2013, 244-245, 151–159.
  • Adak, A.; Pal, A.; Bandyopadhyay, M. Spectrophotometric determination of anionic surfactants in wastewater using acridine orange. Ind. J. Chem. Technol. 2005, 12, 145–148.
  • Taffarel, S.R.; Rubio, J. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Miner. Eng. 2009, 22, 336–343.
  • Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Proc. Biochem. 1999, 34, 451–465.
  • Babel, S.; Kurniawan, T.A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 2004, 54, 951–967.
  • Veli, S.; Alyuz, B. Adsorption of copper and zinc from aqueous solutions by using natural clay. J. Hazard. Mater. 2007, 149, 226–233.
  • Hasar, H. Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. J. Hazard. Mater. 2003, B97, 49–57.
  • Rao, M.M.; Ramesh, A.; Rao, G.P.C.; Seshaiah, K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. J. Hazard. Mater. 2006, B129, 123–129.
  • Ozer, A.; Ozer, D. Ozer, A. The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters. Proc. Biochem. 2004, 39, 2183–2191.
  • Afkhami, A.; Saber-Tehran, M..; Bagheri, H. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J. Hazard. Mater. 2010, 181, 836–844.
  • Hasany, S.M.; Saeed, M.M.; Ahmed, M. Sorption and thermodynamic behavior of zn(II)-thiocyanate complexes onto polyurethane foam on acidic solutions. J. Radioanal. Nucl. Chem. 2002, 252, 477–484.
  • Faur-Brasquet, C.; Reddad, Z.; Kadirvelu, K.; Le Cloirec, P. Modeling the adsorption of metal ions (Cu2+, Ni2+, Pb2+) onto ACCs using surface complexation models. Appl. Surf. Sci. 2002, 196, 356–365.
  • Persson, I. Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl. Chem. 2010, 82, 1901–1917.
  • Central Pollution Control Board (CPCB), Standards for Emission or Discharge of Environmental Pollutants from Various Industries. Central Pollution Control Board (CPCB), New Delhi, India, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.