3,423
Views
23
CrossRef citations to date
0
Altmetric
ARTICLES

Marcellus and mercury: Assessing potential impacts of unconventional natural gas extraction on aquatic ecosystems in northwestern Pennsylvania

, , , , , , , & show all

References

  • Chen, C.Y.; Stemberger, R.S.; Kamman N.C.; Mayes, B.M; Folt, C.L. Patterns of Hg bioaccumulation and transfer in aquatic food webs across multi-lake studies in the northeast US. Ecotoxicology 2005, 14, 135–147.
  • Fitzgerald, W.F.; Lamborg, C.H.; Hammerschmidt, C.R. Marine biogeochemical cycling of mercury. Chem. Rev. 2007, 107, 641–662.
  • Paller, M.H.; Jagoe, C.H.; Bennett, H.; Brant, H.A.; Bowers, J.A. Influence of methylmercury from tributary streams on mercury levels in Savannah River Asiatic clams. Sci. Total Environ. 2004, 325, 209–219.
  • Gray, J.E.; Hines, M.E.; Biester, H. Mercury methylation influenced by areas of past mercury mining in the Terlingua district, Southwest Texas, USA. Appl. Geochem. 2006, 21(11), 1940–1954.
  • Gustin, M.S.; Lindberg S.E.; Weisberg, P.J. An update on the natural sources and sinks of atmospheric mercury. Appl. Geochem. 2008, 23, 482–493.
  • Pacyna, E.G.; Pacyna, J.M.; Sundseth, K.; Munthe, J.; Kindborn, K.; Wilson, S.; Steenhuisen, F.; Maxson, P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 2010, 44(20), 2487–2499.
  • Seigneur, C.; Jayaraghavan, K.; Lohman, K.; Karamchandani, P.; Scott, C. Globalsource attribution for mercury deposition in the United States. Environ. Sci. Technol. 2004, 38, 555–569.
  • Shetty, S.K.; Lin, C.J.; Streets, D.G.; Jang, C. Model estimate of mercury emission from natural sources in East Asia. Atmos. Environ. 2008, 42, 8674–8685.
  • Electronic report on the environment for 2008; mercury indicator. NTIS PB2008-112484 U.S. Environmental Protection Agency: Washington, DC, 2009/600/R-07/045F, 2009. Available at http://cfpub.epa.gov/eroe/index.cfm?fuseaction=detail.viewInd&lv=list.listByAlpha&r=188199&subtop=341. (accessed Dec 2013).
  • Lindberg, S.; Bullock, O.R.; Ebinghaus, R.; Engstrom, D.; Feng, X.; Fitzgerald, W.; Pirrone, N.; Prestbo, E.; Seigneur, C. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 2007, 36, 19–32.
  • Mason R.P.; Abbott, M.L.; Bodaly, R.A.; Bullock, O.R.; Evers, D.; Lindberg, S.E.; Murray, M.; Swain, E.B. Monitoring the response to changing mercury deposition. Environ. Sci. Technol. 2009, 39(1), 14–22.
  • U.S. Environmental Proection Agency (USEPA). National Listing of Fish and Wildlife Advisories (NLFWA). Office of Water: Washington, DC, 2001. Available at http://www.epa.gov/ost/fish/listing.html (accessed Dec 2013).
  • U.S. Environmental Proection Agency (USEPA). National listing of fish advisories: technical fact sheet; 2008 biennial national listing. U.S. Environmental Protection Agency: Washington, DC, EPA-823-F-09-007, 2009. Available at http://water.epa.gov/scitech/swguidance/fishshellfish/fishadvisories/tech2008.cfm (accessed Dec 2013).
  • U.S. Environmental Protection Agency (USEPA) Great Lakes water quality initiative technical support document for wildlife criteria: EPA 820-B95-009 U.S. Environmental Protection Agency (USEPA). Office of Water: Washington, DC, 1995.
  • Drohan, P.J.; Brittingham, M.; Bishop, J.; Yoder, K. Early trends in landcover change and forest fragmentation due to shale-gas development in Pennsylvania: A potential outcome for the northcentral Appalachians. Environ. Manage. 2012, 49(5), 1061–1075.
  • US DOE. Modern shale gas development in the United States: A primer. Office of Fossil Energy and National Energy Technology Laboratory, United States Department of Energy; Oklahoma City, OK, 2009; 96 pp.
  • Vidic, R.D.; Brantley, S.L.; Vandenbossche, J.M.; Yoxtheimer, D.; Abad, J D. Impact of Shale Gas Development on Regional Water Quality. Science 2013, 340(6134), 1235009.
  • Kharaka, Y.K.; Thordsen, J.J.; Conaway, C.H.; Thomas R.B. The energy-water nexus: potential groundwater-quality degredation associated with production of shale gas. Procedia Earth Planet. Sci. 2013, 7, 417–422.  
  • Boswell, Z. A study of natural gas extraction in Marcellus Shale. Master's Thesis, submitted to the Department of Civil and Environmental Engineering at the Massachusetts Institute of Technology, 2011, 73 pp.
  • Well Permit Issuance for Horizontal Drilling and High-volume Hydraulic Fracturing to Develop the Marcellus Shale and Other Low-permeability Gas Reservoirs. Revised Draft Supplemental Generic Environmental Impact Statement on the Oil, Gas and Solution Mining Regulatory Program, New York State Department of Environmental Conservation. Division of Mineral Resources: Albany, NY, 2011.
  • Struchtemeyer, C.G.; Elshahed, M.S. Bacterial communities associated with hydraulic fracturing fluids in thermogenic natural gas wells in North Central Texas, USA. FEMS Microbiol. Ecol. 2012, 81, 13–25.
  • Murali Mohan, A.; Hartsock, A.; Hammack, R.W.; Vidic, R.D.; Gregory, K.B. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas. FEMS Microbiol. Ecol. 2013, 86, 576–580.
  • Rahm, B.; Bates, J.T.; Bertoia, L.R.; Galford, A.E.; Yoxtheimer, D.A.; Riha, S.J. Wastewater management and Marcellus shale gas development: trends, drivers, and planning implications. J. Environ. Manage. 2013, 120, 105–113.  
  • Vengosh, A.; Warner, N.; Jackson, R.; Darrah, T. The effects of shale gas exploration and hydraulic fracturing on the quality of water resources in the United States. Procedia Earth Planet. Sci. 2013, 7, 863–866.
  • Kargbo, D.; Wilhelm, R.; Campbell, D. Natural gas plays in the Marcellus shale: challenges and potential opportunities. Environ. Sci. Technol. 2010, 44, 5679–5684.
  • Lee, S. Challenges and strategies of shale gas development. Master's Thesis, University of Texas at Austin: Austin, TX, 2012.
  • Rahm, D. Regulating hydraulic fracturing in shale gas plays: the case of Texas. Energy Pol. 2011 39, 2974–2981.
  • Considine, T.; Watson, R.; Considine, N.; Martin, J. Environmental impacts during Marcellus Shale gas drilling: causes, impacts, and remedies, Shale Resources and Society Institute Report 2012-1, State University of New York at Buffalo, 2012.
  • Warner, N.; Jackson, R.; Darrah, T.; Osborn, S.; Down, A.; Zhao, K.; White, A.; Vengosh, A. Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proc. Natl. Acad. Sci. 2012, 109(30), 11961–11966.
  • Peduzzi, P.; Ruth, H.R.R. Gas fracking: can we safely squeeze the rocks? Environ. Develop. 2013, 6, 86–99.
  • New York City Department of Environmental Protection. Impact assessment of natural gas production in the New York City water supply watershed. City of New York: New York, NY, 2009.
  • Rahm, B.; Riha, S. Toward strategic management of shale gas development: Regional, collective impacts on water resources. Environ. Sci. Poll. 2012, 17, 12–23.
  • Broomfield, M. Support to the identification of potential risks for the environment and human health arising from hydrocarbons operations involving hydraulic fracturing in Europe. AEA 2012, 17c, 1–210.
  • Leff, E. Supplemental Generic Environmental Impact Statement on the Oil, Gas and Solution Mining Regulatory Program, Well Permit Issuance for Horizontal Drilling and High-Volume, Hydraulic Fracturing to Develop the Marcellus Shale and Other Low-Permeability Gas Reservoirs. New York State Department of Environmental Conservation: New York, NY, 2011.
  • Ward, D.M.; Nislow, K.H.; Folt, C.L. Bioaccumulation syndrome: identifying factors that make some stream food webs prone to elevated mercury bioaccumulation. Ann. NY Acad. Sci. 2010, 1195, 62–83.
  • Pickhardt, P.C.; Fisher, N.S. Accumulation of inorganic and methylmercury by freshwater phytoplankton in two contrasting water bodies. Environ. Sci. Technol. 2007, 41(1), 125–131.
  • Johnson, N. 2010. Pennsylvania energy impacts assessment. The Nature Conservancy, Harrisburg, PA. Available at http://www.marcellus.psu.edu/resources/PDFs/tncenergy.pdf (accessed Jan 2014).
  • Ladlee, J.; Jacquet, J. The implications of multi-well pads in the Marcellus Shale. Community and Regional Development Institute at Cornell (CaRDI) Research and Policy Brief Series, Cornell University, Ithaca NY, 2011, 43.
  • Schelker, J.; Eklöf, K.; Bishop, K.; Laudon, H. Effects of forestry operations on dissolved organic carbon concentrations and export in boreal first-order streams. J. Geophys. Res. 2012, 117 (G1).
  • Jardine, T.; Kidd, K.; Rasmussen, J. Aquatic and terrestrial organic matter in the diet of stream consumers: implications for mercury bioaccumulation. Ecol. Appl. 2012, 22(3), 843–855.
  • Bryce, S.A.; Lomnicky, G.A.; Kaufmann, P.R. Protecting sediment-sensitive aquatic species in mountain streams through the application of biologically based streambed sediment criteria. J. North Am. Benthol. Soc. 2010, 29(2), 657–672.
  • Trudel, M.; Rasmussen, J.B. Bioenergetics and mercury dynamics in fish: a modelling perspective. Can. J. Fish. Aquat. Sci. 2006, 63, 1890–1902.
  • Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R. Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation. Environ. Sci. Technol. 2009, 43, 2733–2739.
  • Cabana, G.; Rasmussen, J.B. Modeling food-chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 1994, 372, 255–257.
  • Pennsylvania Department of Environmental Protection (PADEP). Oil and Gas Reports. Commonwealth of Pennsylvania: Harrisburg, PA, 2013. Available at http://www.portal.state.pa.us/portal/server.pt/community/marcellusshale/20296 (accessed Dec 2013).
  • Penn State Marcellus Center for Outreach and Development. Map of Issued Permits for Unconventional Wells. Penn State University: University Park, PA, 2012. Available at http://www.marcellus.psu.edu/resources/maps.php (accessed Dec 2013).
  • Olmstead, S.; Muehlenbachs, L.; Shih, J.; Chu, Z.; Krupnick, A. Shale gas development impacts on surface water quality in Pennsylvania. Proc. Natl. Acad. Sci. 2013, 110(13), 4962–4967.
  • Entrekin, S.; Evans-White, M.; Johnson, B.; Hagenbuch, E. Rapid expansion of natural gas development poses a threat to surface waters. Front. Ecol. Environ. 2011, 9(9), 503–511.
  • Pennsylvania Department of Environmental Protection (PA DEP). Permits Issued Detail Report. Harrisburg, PA, 2012. http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/Oil_Gas/Permits_Issued_Detail (accessed July 2013).
  • Pennsylvania Department of Environmental Protection (PA DEP). SPUD Data Report. PA DEP: Harrisburg, PA, 2012. http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/Oil_Gas/Spud_External_Data (accessed July 2013).
  • Ground Water Protection Council (GWPC), & Interstate Oil and Gas Compact Commission (IOGCC). FracFocus: Chemical Disclosure Registry. FracFocus Chemical Disclosure Registry, 2010. Available at http://www.fracfocusdata.org/DisclosureSearch/ (accessed Jul 2013).
  • Olson, M.L.; DeWild, J.F. Techniques for the collection and species-specific analysis of low levels of mercury in water, sediment, and biota: U.S. Geological Survey, Water Resources Investigations Report 99–4018-B, 11 pp, 1999.
  • John, F.B. Collection water-quality samples for dissolved metals-in-water. USA Environmental Protection Agency: Washington, DC, 2000. http://www.epa.gov/region6/qa/qadevtools/mod5_sops/surface_water_sampling/low_level_metals/r6wtr-sampling-metals.pdf (accessed Dec 2013).
  • Lewis, M.E.; Brigham, M.E. Low-level mercury. In Processing of Water Samples, F. D. Wilde, D.B. Radtke, J. Gibs, R. T. Iwatsubo, Eds. US Geological Survey Techniques of Water-Resources Investigations, Book 9, Chapter A5, 2004.
  • Hazen, T.C.; Dubinsky, E.A.; DeSantis, T.Z.; Andersen, G.L.; Piceno, Y.M.; Singh, N.; Jansson, J.K.; Probst, A.; Borglin, S.E.; Fortney, J.L.; Stringfellow, W.T.; Bill, M.; Conrad, M.E.; Tom, L.M.; Chavarria, K.L.; Alusi, T.R.; Lamendella, R.; Joyner, D.C.; Spier, C.; Baelum, J.; Auer, M.; Zemla, M.L.; Chakraborty, R.; Sonnenthal, E.L.; D’haeseleer, P.; Holman, H.N.; Osman, S., Lu’ Z., Van Nostrand, J.D.; Deng, Y.; Zhou, J.; Mason, O.U. Deep-Sea oil plume enriches indigenous oil-degrading bacteria. Science 2010, 330, 204–208.
  • Peck, D.V.; Lazorchak, J.M.; Klemm, D.J. Field operations and methods for wadeable streams; U.S. Environmental Protection Agency: Corvallis, OR, 2003; 203–232.
  • Barbour, M.T.; Gerritsen, J.; Snyder, B.D.; Stribling, J.B. Chapter 8: Fish Protocol. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency: Office of Water: Washington, DC, 1999; 1–20.
  • Barbour, M.T.; Gerritsen, J.; Snyder, B.D.; Stribling, J.B. Chapter 7 (part A): Benthic Macroinvertebrate Protocols. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency: Office of Water: Washington, DC, 1999; 1–35.
  • Lutz, M.A.; Brigham, M.E.; Marvin-DiPasquale, M. Procedures for collecting and processing streambed sediment and pore water for analysis of mercury as part of the National Water-Quality Assessment Program; Open-File Report 2008-1279, U.S. Geological Survey: Reston, VA, 2008.
  • Fernandez, J.A.; Aboal, J.R.; Carballeira, A. Identification of pollution sources by means of moss bags. Ecotoxicol. Environ. Safety 2004, 59, 76–83.
  • US EPA. Chapter Three: Inorganic Analytes. SW-846, Revision 4; US Environmental Protection Agency: Washington, DC, 2007; 1–28. Available at (http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/chap3.pdf" (accessed Dec 2013).
  • Cesa, M.; Campisi, B.; Bizzotto, A.; Ferraro, C.; Fumagalli, F.; Nimis, P.L. A Factor Influence study of trace element bioaccumulation in moss bags. Arch. Environ. Contam. Toxicol. 2008, 55, 386–396.
  • Brightbill, R.A.; Murray, K.R.; Bilger, M.D.; Byrnes, J.D. Total mercury and methylmercury in fish fillets, water, and bed sediments from selected streams in the Delaware River Basin, New Jersey, New York, and Pennsylvania, 1998-2001. Water Resources Investigation Report 03-4183, 2004.
  • US EPA. Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. US EPA 823-B-01-002. U.S. Environmental Protection Agency, Office of Water: Washington, DC, 2001; 1–208.
  • Scudder, B.C.; Chasar, L.C.; Wentz, D.A.; Bauch, N.J.; Brigham, M.E.; Moran, P.W.; Krabbenhoft, D.P. Mercury in fish, bed sediment, and water from streams across the United States, 1998–2005. U.S. Geological Survey Scientific Investigations Report 2009–5109, Reston, VA, 2009.
  • Merritt, R.W., Cummins, K.W., Berg, M.B., Eds. An Introduction to Aquatic Insects of North America, 4th ed.; Kendall/Hunt Publishing Company: Dubuque, IA 2008; 1158 pp.
  • Nuttall, T. Key to the crayfishes of Pennsylvania. The Carnegie Museum of Natural History: Pittsburgh, PA. Available at http://iz.carnegiemnh.org/crayfish/key_to_pa_crayfishes.html (accessed Dec 2013).
  • Caporaso, G.J.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Gonzalez Peña, A.; Goodrich, J.K.; Gordon, J.I.; Huttley, G.A.; Kelley, S.T.; Knights, D.; Koenig, J.E.; Ley, R.E.; Lozupone, C.A.; McDonald, D.; Muegge, B.D.; Pirrung, M.; Reeder, J.; Sevinsky, J.R.; Turnbaugh, P.J.; Walters, W.A.; Widmann, J.; Yatsunenko, T.; Zaneveld, J.; Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nat. Meth. 2010, 7, 335–336.
  • Edgar, R. CUPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Meth. 2013, 10, 996–998.
  • Trexler, R.; Solomon, C.; McClure, E.; Brislawn, C.; Peterson, M.; Keddache, M.; Mason, O.; Hazen, T.; Hazen, T.; Grant, C.; Lamendella, R. The response of freshwater aquatic microbial communities to Marcellus Shale natural gas extraction. Front. Microbiol. 2014, 5, doi: 10.3389/fmicb.2014.00522.
  • Cenci, R.M. The use of aquatic moss (Fontinalis antipyretica) as monitor of contamination in standing and running waters: limits and advantages. Scientific and legal aspects of biological monitoring in freshwater J. Limnol. 2000, 60, 53–61.
  • U.S. Environmental Protection Agency (USEPA). Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrometry, Draft method 7473; U.S. Environmental Protection Agency: Washington, DC, 1998.
  • Cizdziel, J.V.; Hinners, T.A.; Heithmar, E.M. Determination of total mercury in fish tissues using combustion atomic absorption spectrometry with gold amalgamation. Water Air Soil Pollut. 2002, 135, 355–370.
  • Peterson, S.A.; Van Sickle, J.; Hughes, R.M.; Schacher. J.A., Echols, S.F. A biopsy procedure for determining filet and predicting whole-fish mercury concentration. Arch. Environ. Contam. Toxicol. 2005, 48, 99–107.
  • U.S. Environmental Protection Agency (USEPA). Method 1631 Revision E-Mercury in water by oxidation, purge, and trap, and cold vapor atomic fluorescence spectrometry: EPA-821-R-02-019: 38, US EPA: Washington, DC, 2002.
  • Olund, S.D.; DeWild J.F.; Olson, M.L.; Tate, M.T. Methods for preparation and analysis of solids and suspended solids for total mercury: U.S. Geological Survey Techniques of Water-Resources Investigations, vol. 5, chap. A8; U.S. Geological Survey: Reston, VA, 2004.
  • Aiken, G.R. Chloride interference in the analysis of dissolved organic carbon by the wet oxidation method. Environ. Sci. Technol. 1992, 26, 2435–2439.
  • Taylor, J.K. Quality Sssurance of Chemical Measurements; Lewis Publishers: Chelsea, MI, 1987.
  • Gesch, D.B. The National Elevation Dataset. In Maune, D. Digital Elevation Model Technologies and Applications: The DEM Users Manual, 1st Ed.; Maune, D. Ed.; American Society for Photogrammetry and Remote Sensing: Bethesda, Maryland, 2007; 99–118.
  • PAMAP. PAMAP program land cover for Pennsylvania. Pennsylvania geospatial data clearinghouse; University Park, PA, 2005. Available at http://www.pasda.psu.edu/uci/FullMetadataDisplay.aspx?file=palanduse05utm18nad83.xml. (accessed Mar 2013).
  • Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for Pennsylvania. Available at http://soildatamart.nrcs.usda.gov (accessed Mar 2013).
  • PASDA. Networked streams of Pennsylvania. Pennsylvania Geospatial Data Clearinghouse, 1998. Available at http://www.pasda.psu.edu/uci/FullMetadataDisplay.aspx?file=netstreams1998.xml (accessed Mar 2013).
  • Eros, T. Partitioning the diversity of riverine fish: the roles of habitat types and non-native species. Freshwater Biol. 2007, 52(7), 1400–1415.
  • Kreutzweiser, D.P.; Hazlett, P.W., Gunn, J.M. Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: A review. Environ. Rev. 2008, 16, 157–179.
  • Johnston, C.A.; Shmagin, B.A.; Frost, P.C.; Cherrier, C.; Larson, J.H.; Lamberti, G.A.; Bridgham, S.D. Wetland types and wetland maps differ in ability to predict dissolved organic carbon concentrations in streams. Sci. Total Environ. 2008, 404(2–3), 326–334.
  • Laudon, H.; Berggren, M.; Ågren, A.; Buffam, I.; Bishop, K.; Grabs, T.; Jansson, M.; Köhler, S. Patterns and dynamics of dissolved organic carbon (DOC) in boreal streams: The role of processes, connectivity, and scaling. Ecosystems 2011, 14, 880–893.
  • Dittman, J.; Shanley, J.; Driscoll, C.; Aiken, G.; Chalmers, A.; Towse, J.; Selvendiran, P. Mercury dynamics in relation to dissolved organic carbon concentration and quality during high flow events in three northeastern U.S. streams. Water Resour. Res. 2010, 46(7), W07522, doi:10.1029/2009WR008351.
  • Burns, D.; Riva-Murray, K.; Bradley, P.; Aiken, G.; Brigham, M. Landscape controls on total and methyl Hg in the upper Hudson River basin, New York, USA. J. Geophys. Res. 2007, 117, (G1).
  • Selvendiran, P.; Driscoll, C.; Bushey, J.; Montesdeoca, M. Wetland influence on mercury fate and transport in a temperate forested watershed. Environ. Pollut. 2008, 154, 46–55.
  • Liu, G., Cai, Y., O’Driscoll, N., Eds. Environmental Chemistry and Toxicology of Mercury; John Wiley & Sons, Inc: Somerset, NJ, 2012; 468–471.
  • Munthe, J.; Hultberg, H. Mercury and methylmercury in runoff from a forested catchment – concentrations, fluxes, and their response to manipulation. Water Air Soil Poll..2004, 4, 607–618.
  • Tsui, M.T.K.; Finlay, J.C.; Nater, E.A. Mercury bioaccumulation in a stream network. Environ. Sci. Technol. 2009, 43, 7016–7022.
  • Grigal, D.F. Inputs and outputs of mercury from terrestrial watersheds: a review. Environ. Rev. 2002, 10, 1–39.
  • St. Louis, V.L.; Rudd, J.W.; Kelly, C.A.; Beaty, K.G.; Bloom, N.S.; Flett, R.J. Importance of wetlands as sources of methyl mercury to boreal forest ecosystems. Can. J. Fish. Aquat. Sci. 1994, 51(5), 1065–1076.
  • Agren, A.; Löfgren, S. pH sensitivity of Swedish forest streams related to catchment characteristics and geographical location – Implications for forest bioenergy harvest and ash return. For. Ecol. Manage. 2012, 276, 10–23.
  • Driscoll, C.T. Ecological Effects of Acidic Deposition, In Reference Module in Earth Systems and Environmental Sciences. Elsevier: Amsterdam, 2013.
  • Driscoll, C.; Driscoll, K.; Mitchell, M.; Raynal, J. Effects of acidic deposition on forest and aquatic ecosystems in New York State. Environ. Pollut. 2003, 123, 327–336.
  • Baker, J.; Van Sickle, J.; Gagen, C.J.; DeWalle, D.R.; Sharpe, W.E.; Corlin, R.F.; Baldigo, B.P.; Murdoch, P.S.; Bath, D.W.; Krester, W.A.; Simonin, H.A.; Wigington, P.J. Episodic acidification of small streams in the northeastern United States: Effects on fish populations. Ecol. Soc. Am. 1996, 6, 422–437.
  • Hammarstrom, J.M.; Brady, K.; Cravotta, C.A. Acid-Rock Drainage at Skytop, Centre County, Pennsylvania. U.S. Geological Survey Open-File Report 2005-1148. USGS: Reston, VA. 2004.
  • Fisher, C.; Jack, R.; Lopez, L. Determination of anions in fracking flowback water from the Marcellus shale using automated dilution and ion chromatography. Thermo Scientific Technical Note 139, 2013.
  • Jardine, T.D.; Kidd, K.A.; O’ Driscoll, N. Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams. Aquat. Toxicol. 2013, 132–133, 46–52.
  • Pedder, S.C.J.; Maly, E.J. The avoidance response of groups of juvenile brook trout, Salvelinus fontinalis to varying levels of acidity. Aquat. Toxicol. 1986, 8(2), 111–119.
  • Simonin H.A.; Krester W.A.; Bath D.W.; Olson M.; Gallagher J. In situ bioassays of brook trout (Salvelinus fontinalis) and blacknose dace (Rhinichthys atratulus) in Adirondack streams affected by episodic acidification. Can. J. Fish. Aquat. Sci. 1993, 50(5), 902–912.
  • Baldigo B.P.; Lawrence G.B. Effects of stream acidification and habitat on fish populations of a North American River. Aquat. Sci. 2001, 63, 196–222.
  • Peterson R.H.; Coombs K.; Power J.; Paim U. Responses of several fish species to pH gradients. Can. J. Zool. 1989, 67(6), 1566–1572.
  • Shami, S.; Heino, J.; Salmah, M.; Hassan, A.; Suhaila, A.; Madrus, M. Drivers of beta diversity of macroinvertebrate communities in tropical forest streams. Freshwater Biol. 2013, 58(6), 1126–1137.
  • Kaller, M.; Hartman K. Evidence of a threshold level of fine sediment accumulation for altering benthic macroinvertebrate communities. Hydrobiologia 2004, 518, 95–104.
  • Wilson, M.; Winsor, L.; Nislow, K. What predicts the use by brook trout (Salvelinus fontinalis) of terrestrial invertebrate subsidies in headwater streams? Freshwater Biol. 2013, 59(1), 187–199.
  • Compeau, G.C.; Bartha, R. Sulfate-reducing bacteria: Principal methylators of Mercury in anoxic estuarine sediment. Appl. Environ. Microbiol. 1985, 50, 498–502.
  • Gilmour, C.C.; Henry, E.A.; Mitchell, R. Sulfate stimulation of Mercury methylation in Freshwater Sediments. Environ. Sci. Technol. 1992, 26, 2281–2287.
  • Fleming, E.J.; Mack, E.E.; Green, P.G.; Nelson, D.C. 2006. Mercury Methylation from unexpected sources: Molybdate-inhibited freshwater sediments and Iron-reducing bacterium. Appl. Environ. Microbiol. 2006, 72, 457–464.
  • Kerin, E.J.; Gilmour, C.C.; Roden, E.; Suzuki, M.T.; Coates, J.D.; Mason, R.P. Mercury methylation by dissimilatory iron-reducing bacteria. Appl. Environ. Microbiol. 2006, 72, 7919–7921.
  • Cébron, A.; Beguiristain, T.; Faure, P.; Norini, M.P.; Masfaraud, J.F.; Leyval, C. Influence of vegetation on the in situ bacteria community and Polycyclic Aromatic Hydrocarbon (PAH) degraders in aged PAH-contaminated or Thermal-Desorption-treated soil. Appl. Environ. Microbiol. 2009, 75(19), 6322–6330.
  • Vishnivetskaya, T.A.; Mosher, J.J.; Palumbo, A.V.; Yang, Z.K.; Podar, M., Brown; S.D., Brooks; S.C., Gu, B.; Southworth, G.R.; Drake, M.M.; Brandt, C.C.; Elias, D.A. Mercury and other heavy metals influence bacterial community structure in contaminated Tennessee streams. Appl. Environ. Microbiol. 2011, 77, 302–311.
  • Herlemann, D.P.; Geissinger, O.; Brune, A. The Termite Group I Phylum is highly diverse and widespread in the environment. Appl. Environ. Microbiol. 2007, 73, 6682–6685.
  • Dojka, M.A.; Hugenholtz, P.; Haack, S.K.; Pace, N.R. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 1998, 64, 3896–3977.
  • Marvin-Dipasquale, M.; Lutz, M.A.; Brigham, M.E.; Krabbenhoft, D.P.; Aiken, G.R.; Orem, W.H.; Hall, B.D. Mercury cycling in stream ecosystems: Benthic methylmercury production and bed sediment-pore water partitioning. Environ. Sci. Tech. 2009, 43, 2726–2732.
  • Paulson, A.J. Sources of mercury in sediments, Water, and fish of the lakes of Whatcom County, Washington. USGS, Scientific Investigations Report 2004–5084. 2004.
  • Kamman, N.C.; Burgess, N.M.; Driscoll, C.T.; Simonin, H.A.; Goodale, W.; Linehan, J.; Estabrook, R.; Hutcheson, M.; Major, A.; Scheuhammer, A.M.; Scruton, D.A. Mercury in freshwater fish of Northeast North America: a geographic perspective based on fish tissue monitoring databases. Ecotoxicology 2005, 14, 163–180.
  • Peterson, S.A.; Sickel, J.V.; Herlihy, A.T.; Hughes, RM. Mercury concentrations in fish from streams and rivers throughout the western United States. Environ. Sci. Technol. 2007, 41(1), 58–65.
  • Wiener, J.G.; Knights, B.C.; Sandheinrich, M.B.; Jeremiason, J.D.; Brigham, M.E.; Engstrom, D.R.; Woodruff, L.G.; Cannon, W.F.; Balogh, S.J. Mercury in soils, lakes, and fish in Voyageurs National Park: importance of atmospheric deposition and ecosystem factors. Environ. Science Technol. 2006, 40, 6261–6268.
  • Driscoll, C.T.; Han, Y.; Chen, C.Y.; Evers, D.C.; Fallon, L.K.; Holsen, T.M.; Kamman, N.C.; Munson, R.K. Mercury Contamination in Forest and Freshwater Ecosystems in the Northeastern United States. Bioscience 2007, 57(1), 17–28.
  • Castro, M.S.; Hilderbrand, R.H.; Thompson, J.; Heft, A.; Rivers, S.E. Relationship between wetlands and mercury in brook trout. Arch. Environ. Contam. Toxicol. 2007, 52, 97–103.
  • Mierzykowski, S.E.; Ruksznis, P.; McCaw, D.; Czapiga, J. Environmental contaminants in brook trout (Salvelinus fontinalis) from Cove Brook and two tributaries of the Sheepscot River. USFWS. Spec. Proj. Rep. FY07-MEFO-5-EC. Maine Field Office. Old Town, ME, 2008. 41 pp.
  • Mason, R.P.; Reinfelder, J.R.; Morel, F.M.M. Uptake, Toxicity, and Trophic Transfer of Mercury in a Coastal Diatom. Environ. Sci. Technol. 1996, 30(6), 1835–1845.
  • Watras, C.J.; Back, R.C.; Halvorsen, S.; Hudson, R.J.M.; Morrisson, K.A.; Wente, S.P. Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ. 1998, 219, 183–208.
  • Greenfield, B.K.; Hrabik, T.R.; Harvey, C.J.; Carpenter, S.R. Predicting mercury levels in yellow perch: use of water chemistry, trophic ecology, and spatial traits. Can J. Fish. Aquat. Sci. 2001, 58, 1419–1429.
  • Karimi, R.; Chen, C.Y.; Pickhardt, P.C.; Fisher, N.S.; Folt, C.L. Stoichiometric controls of mercury dilution by growth. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 7477–7482.
  • Homeostasis and Toxicology of Non-Essential Metals, In Fish Physiology, Wood, Chris M., Farrell, Anthony P., Brauner, Colin J. Eds.; Academic Press, 2011, Vol. 31B, 1–531.
  • Homeostasis and Toxicology of Non-Essential Metals, In Fish Physiology, Wood, Chris M., Farrell, Anthony P., Brauner, Colin J. Eds.; Academic Press, 2011, Vol. 31B, 1–531.
  • Boudou; A., Ribeyre, F. Contamination of aquatic biocenoses by mercury compounds: an experimental ecotoxicological approach. In Aquatic Toxicology (Advances in Environmental Sceince and Technology), John Wiley and Sons: New York, 1983, Vol. 13, 73–116.
  • Lemes, M.; Wang, F. Methylmercury speciation in fish muscle by HPLC-ICP_MS following enzymatic hydrolysis. J. Anal. At. Spectrom. 2009, 24, 663–668.
  • Gentes, S.; Maury-Brachet, R.; Guyoneaud, R.; Monperrus, M.; Andre, J.; Davail, S.; Legeay, A. Mercury bioaccumulation along food webs in temperate aquatic ecosystems colonized by aquatic macrophytes in south western France. Ecotoxicol. Environ. Safety 2013, 91, 180–187.
  • Kouba, A.; Buric, M.; Kozak, P. Bioaccumulation and effects of heavy metals in crayfish: a review. Water Air and Soil Pollut. 2010, 211, 5–16.
  • Rizzo, A.; Arcagni, M.; Arribére, M.A.; Bubach, D.; Ribeiro Guevara, S. Mercury in the biotic compartments of Northwest Patagonia lakes, Argentina. Sci. Total Environ. 2013, 454–455, 170–180.
  • Mason, R.; Laporte, J.M.; Andres, S. Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Arch. Environ Contam. Toxicol. 2000, 38, 283–297.
  • Suchanek, T.H.; Richerson, P.J.; Zierenberg, R.A.; Eagles-Smith, C.A.; Slotton, D.G.; Harner, E.J.; Osleger, D.A.; Anderson, D.W.; Cech, J.J.; Schladow, S.G.; Colwell, A.E.; Mount, J.F.; King, P.S.; Adam, D.P.; McElroy, K.J. The Legacy of Mercury Cycling from Mining Sources in an Aquatic Ecosystem: From Ore to Organism. Ecol. Appl. 2008, 18(8), A12–A28.
  • Simon, O.; Boudou, A. Simultaneous experimental study of direct and direct plus trophic contamination of the crayfish Astacus astacus by inorganic mercury and methylmercury. Environ Toxicol. Chem. 2001, 20(6), 1206–1215.
  • Barriada J.L.; Herrero R.; Prada-Rodriguez D.; Sastre de Vicente M.E. Interaction of mercury with chitin: A physicochemical study of metal binding by a natural biopolymer. React. Funct. Polym. 2008, 68(12), 1609–1618.
  • Boening D.W. Ecological effects, transport, and fate of mercury: a general review. Chemosphere 2000, 40 (12), 1335–1351.
  • Coelho J.P.; Reis A.T.; Ventura S.; Pereiera M.E.; Duarte A.C.; Pardal M.A. Pattern and pathways for mercury lifespan bioaccumulation in Carcinus maenas. Mar. Pollut. Bull. 2008, 56(6), 1104–1110.
  • Zizek S.; Horvat M.; Gibicar D.; Fajon V.; Toman M.J. Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining. Sci. Total Environ. 2007, 377(2-3), 407–415.
  • Pennuto, C.M.; Lane, O.P.; Evers, D.C; Taylor, R.J.; Loukmas, J. Mercury in the Northern Crayfish, Orconectes virilis (Hagen), in New England, USA. Ecotoxicology 2005, 14(1-2), 149–162.
  • Kuklina, I.; Kouba, A.; Kozák, P. Real-time monitoring of water quality using fish and crayfish as bio-indicators: a review. Environ. Monit. Assess. 2013, 185(6), 5043–5053.
  • Riva-Murray, K.; Chasar, L.C.; Bradley, P.M.; Burns, D.A.; Brigham, M.E.; Smith, M.J.; Abrahamson, T.A. Spatial patterns of mercury in macroinvertebrates and fishes from streams of two contrasting forested landscapes in the eastern United States. Ecotoxicology 2011, 20, 1530–1542.
  • Harding, K.M.; Gowland, J.A.; Dillon, P.J. Mercury concentration in black flies Simulium spp. (Diptera, Simuliidae) from soft-water streams in Ontario, Canada. Environ. Pollut. 2006, 143(3), 529–535.
  • Moore, T.R.; Bubier, J.L.; Heyes, A.; Flett, R.J. Methyl and total mercury in boreal wetland plants, experimental lakes area, northwestern Ontario. J. Environ. Qual. 1995, 24(5), 845–850.
  • Veglio, F.; Beolchini, F. Removal of metals by biosorption: a review. Hydrometallurgy 1997, 44, 301–316.
  • Mouvet, C.; Morhain, E.; Sutter, C.; Couturieux, N. Aquatic mosses for the detection and follow-up of accidental discharges in surface waters. Water Air Soil Pollut. 1993, 66, 333–348.
  • Poikolainen, J.; Kubin, E.; Piispanen, J.; Karhu, J. Atmospheric heavy metal deposition in Finland during 1985–2000 using mosses as bioindicators. Sci. Total Environ. 2004, 318, 171–185.
  • Yu, R.; Adatto, I.; Monesdeoca, M.R.; Driscoll, C.T.; Hines, M.E.; Barkay, T. Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland. FEMS Microbiol. Ecol. 2010, 74(3), 655–668.
  • 655–bert, K.F.; Holsen, T.M.; Chen, C.Y.; Clair, T.A.; Butler, T. Biological mercury hotspots in the northeastern United States and southeastern Canada. Biosci. Mag. 2007, 57, 29–43.
  • Hultberg, H.; Iverfeldt, A.; Lee, Y.H. Methylmercury input and accumulation in forested catchments and critical loads for lakes in southewestern Sweden. In Mercury Pollution: Integration and Synthesis: Watras, J., Huckabee, J.W. Eds. Lewis Publishers: Boca Raton, FL; 1994; 313–322.
  • Lee, Y.H.; Bishop, K.H.; Munthe, J.; Iverfeldt, A.; Verta, M.; Parkman, H.; Hulberg, H. An examination of current Hg deposition and export in Fenno-Scandian cathments. Biogeochemistry 1998, 40, 125–135.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.