Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 50, 2015 - Issue 6
317
Views
1
CrossRef citations to date
0
Altmetric
ARTICLES

Microbacterium oxydans and Microbacterium liquefaciens: A biological alternative for the treatment of Ni-V-containing wastes

, , , &
Pages 602-610 | Received 03 Jul 2014, Published online: 02 Apr 2015

References

  • Madany, I.M; Raveendran, E. Polycyclic aromatic hydrocarbons, nickel and vanadium in air particulate matter in Bahrain during the burning of oil fields in Kuwait. Sci. Total Environ. 1992, 116, 281–289.
  • Falahi-Ardakani, A. Contamination of environment with heavy metals emitted from automotives. Ecotox. Environ. Saf. 1984, 8, 152–161.
  • Sokolov, S.M. Methodological aspects of assessing atmospheric contamination with metal aerosols in the vicinity of thermal power complexes. J. Hyg. Epidemiol. Microbiol. Immunol. 1986, 30, 249–254.
  • Flores-Magdaleno, H.; Mancilla-Villa, O.R.; Mejía-Saenz, E.; Olmedo-Bolaños, M.C.; Bautista-Olivas, A.L. Heavy metals in agricultural soils and irrigation wastewater of Mixquiahuala, Hidalgo, Mexico. Afr. J. Agr. Res. 2011, 6, 5505–5511.
  • Kadiiska, M.B.; Mason, R.P.; Dreher, K.L.; Costa, D.L.; Ghio, A.J. In vivo evidence of free radical formation in the rat lung after exposure to an emission source air pollution particle. Chem Res. Toxicol. 1997, 10, 1104–1108.
  • Kasprzak, K.S. Possible role of oxidative damage in metal-induced carcinogenesis. Cancer Invest. 1995, 13, 411–430.
  • Migliore, L.; Bocciardi, R.; Macri, C.; Jacono, F.L. Cytogenetic damage induced in human lymphocytes by four vanadium compounds and micronucleus analysis by fluorescence in situ hybridization with a centromeric probe. Mutat. Res. 1993, 319, 205–213.
  • Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, 333, 134–139.
  • Ayres, R.U. Toxic heavy metals: materials cycle optimization. Proc. Natl. Acad. Sci. USA. 1992, 89, 815–820.
  • Savastano, C.A. The solvent extraction approach to petroleum demetallation. Fuel Sci Technol Int. 1991, 9, 833–871.
  • Adarme, R.; Sughrue, E.L.; Johnson, M.M.; Kidd, D.R.; Phillips, M.D.; Shaw, J.E. Demetallization of asphaltenes: thermal and catalytic effects with small pore catalysts. Amer. Chem. Soc. 1990, 35, 614–618.
  • Bartholdy, J.; Hannerup, P.N. Hydrodemetallation in reside hydro processing. Amer. Chem. Soc. 1990, 35, 619–625.
  • Hernández, A.; Mellado, R.; Martínez, J. Metal accumulation and vanadium induced multidrug resistance by environmental isolates of Escherichia hermani and Enterobacter cloacae. Appl. Environ. Microbiol. 1998, 64, 4377–4320.
  • Fozia, A.; Muhammad, S.; Akcil, A. Biohydrometallurgy techniques of low grade ores: A review on black shale. Hydrometallurgy 2012, 117–118, 1–12.
  • Seidel, A.; Zimmels, Y.; Armon, R. Mechanism of bioleaching of coal fly ash by Thiobacillus thiooxidans. Chem. Eng. J. 2001, 83, 123–130.
  • Bosshard, P.P.; Bachofen, R.; Brandl, H. Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ. Sci. Technol. 1996, 30, 3066–3070.
  • Burgstaller, W.; Schinner, F. Mini review: leaching of metals with fungi. J. Biotechnol. 1993, 27, 91–116.
  • Mishra, D.; Kim, D.J.; Ralph, D.E.; Ahn, J.G.; Rhee, Y.H. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage. 2008, 28, 333–338.
  • Cerruti, C.; Curutchet, G.; Donati, E. Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans. J. Biotechnol. 1998, 62, 209–219.
  • Brandl, H.; Bosshard, R.; Wegmann, M. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 2001, 59, 319–326.
  • Blaustein, B.D.; Hauck, J.T.; Olson, G.J.; Baltrus, J.P. Bioleaching of molybdenum from coal liquefaction catalyst residues. Fuel 1993, 72, 1613–1618.
  • Khin, M.M.A.; Yen-Peng, T. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. J. Biotechnol. 2005, 116, 159–170.
  • Briand, L.; Thomas, H.; Donati, E. Vanadium (V) reduction in Thiobacillus thiooxidans cultures on elemental sulfur. Biotechnol. Lett. 1996, 18, 505–508.
  • Bharadwaj, A.; Ting, Y.P. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking. Bioresour. Technol. 2013, 130, 673–680.
  • Mishra, D.; Kim, D.J.; Ralph, D. E.; Ahn, J.G.; Rhee, Y.H. Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs. Hydrometallurgy 2007, 88, 202–209.
  • Fernández-Linares, L.C.; Rojas-Avelizapa, N.G.; Roldan-Carrillo, T.G.; Ramirez-Islas, E.; Zegarra-Martinez, H.G.; Uribe-Hernandez, R.; Reyes-Avila, R.J.; Flores-Hernandez, D.; Arce-Ortega, J.M. Análisis físicos y químicos en suelo. In Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Instituto Mexicano del Petróleo; Secretaria de Medio Ambiente y Recursos Naturales; Instituto Nacional de Ecologia, Mexico. D.F. ISBN 968-489-037-7, 2006; 19–87.
  • Kamika, I.; Momba, M.N.B. Comparing the tolerance limits of selected bacterial and protozoan species to nickel in wastewater systems. Sci. Total Environ. 2011, 410–411, 172–181.
  • Shirdam, R.; Khanafari, A.; Tabatabaee, A. Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. Iran. J. Biotechnol. 2006, 4, 180–187.
  • Secretaria de Comercio y Fomento Industrial. Norma Mexicana (NMX-AA-008-SCFI-2011). Water analysis – Determination of pH – Test method. Author: Mexico, D.F., México.
  • Relman, D.A. Universal bacterial 16S rDNA amplification and sequencing. In Diagnostic Molecular Microbiology: Principles and Applications; Persing, D.H.; Smith, T.F.; Tenover, F.C.; White, T.J. Eds.; American Society of Microbiology: Washington, DC, 1993; 489–496.
  • Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.
  • Kim, O.S.; Cho, Y.J.; Lee, K.; Yoon, S.H.; Kim, M.; Na, H.; Park, S.C.; Jeon, Y.S.; Lee, J.H.; Yi, H.; Won, S.; Chun, J. Introducing EzTaxon: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012, 62, 716–721.
  • Magis, C.; Taly, J.F.; Bussotti, G.; Chang, J.K.; Di, T.P.; Erb, I.; Espinosa-Carrasco, J.; Notredame, C. T-coffee: Tree-based consistency objective function for alignment evaluation. Meth. Mol Biol. 2014, 1079, 117–129.
  • Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 2011, 28, 2731–2739.
  • Hillis, D.M.; Bull, J.J. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst. Biol. 1993, 42, 182–192.
  • Hall, T.A. BioEdit: a user‐friendly biological sequence alignment editor and analysis program for Windows 95/ 98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98.
  • Chappell, D.A.; Craw, D. Geochemical analogue for circumneutral pH mine tailings: implication for long-term storage, Macraes Mine, Otago, New Zealand. Appl. Geochem. 2002, 17, 1105–1114.
  • Franco-Hernández, M.O.; Vásquez-Murrieta, M.S.; Patiño-Siciliano, A.; Dendooven, L. Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresour. Technol. 2010, 101, 3864–3869.
  • Xie, X.; Fu, J.; Wang, H.; Liu, J. Heavy metal resistance by two bacteria strains isolated from a copper mine tailing in China. Afr. J. Biotechnol. 2010, 9, 4056–4066.
  • Ezzouhri, L.; Castro, E.; Moya, M.; Espinola, F.; Lairini, K. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr. J. Microbiol. Res. 2009, 3, 035–048.
  • Rastogi, G.; Osman, S.; Kukkadapu, R.; Engelhard, M.; Vaishampayan, P.A.; Andersen, G.L.; Sani, R.K. Microbial and mineralogical characterizations of soils collected from the deep biosphere of the former homestake gold mine, South Dakota. Microb. Ecol. 2010, 60, 539–550.
  • Raji, A.I.; Möller, C.; Litthauer, D.; Heerden, E.V.; Piater, L.A. Bacterial diversity of biofilm samples from deep mines in South Africa. Biokemistri. 2008, 20, 53–62.
  • García-Meza, J.V. Autotrophic biofilm development on superficial samples of the gold-silver mine tailings, Valenciana (Mexico): pioneers in tailings remediation. Bull Environ. Contam. Toxicol. 2008, 80, 53–57.
  • Babich, H.; Stotzky, G. Synergism between nickel and copper in their toxicity to microbes: mediation by pH. Ecotox. Environ. Safe. 1983, 7, 576–587.
  • Nies, D.H. Microbial heavy-metal resistance. Appl. Microbiol. Biotechnol. 1999, 51, 730–750.
  • Rajbhansi, A. Study on heavy metal resistant bacteria in guheswori sewage treatment plant. Our Nature 2008, 6, 52–57.
  • El-Sersy, N.A.; El-Sharouny, E.A. Nickel biosorption by free and immobilized cells of marine Bacillus subtilis N10. Biotechnology 2007, 6, 316–321.
  • Akujobi, C.O.; Odu, N.N.; Okorondu, S.I. Bioaccumulation of lead by Bacillus species isolated from pig waste. J. Res. Biol. 2012, 2, 083–089.
  • Husain, R.S.A.; Thatheyus, A.J.; Ramya, D. Bioremoval of nickel using Pseudomonas fluorescens, Am. J. Microbiol. Res. 2013, 1, 48–52.
  • Mathu, I.S.; Kalimuthu, K.; Venkataraman, D.; Raja, G.; Kandasamy, S.; Sangiliyandi, G. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Coll. Surf. B 2011, 85, 174–181.
  • Agrawai, J.; Sherameti, I.; Varma, A. Detoxification of heavy metals: state of art. In: Detoxification of Heavy Metals; Sherameti, I.; Varma, A., Eds.; Springer: Heidelberg, 2011; 1–16.
  • Pennanen, T. Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH-a summary of the use of phospholipid fatty acids, Biolog→ and 3H-thymidine incorporation methods in field studies. Geoderma 2001, 100, 91–126.
  • Humphries, A.C.; Macaskie, L.E. Reduction of Cr(VI) by Desulfovibrio vulgaris and Microbacterium sp. Biotechnol. Lett. 2002, 24, 1261–1267.
  • Pattanapipitpaisal, P.; Brown, N.L.; Macaskie, L.E. Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol. Biotechnol. Lett. 2001, 23, 61–65.
  • Piccirillo, C.; Pereira, S.I.A.; Marques, A.P.G.C.; Pullar, R.C.; Tobaldi, D.M.; Pintado, M.E.; Castro, P.M.L. Bacteria immobilisation on hydroxyapatite surface for heavy metals removal. J. Environ. Manage. 2013, 121, 87–95.
  • Sneath, P.H.A.; Sokal, R.R. Numerical Taxonomy: The Principles and Practice of Numerical Classification; W.H. Freeman: San Francisco, 1973.
  • Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791.
  • Jukes, T.H.; Cantor, C.R. Evolution of protein molecules. In Mammalian Protein Metabolism; Munro, H.N., Eds.; Academic Press: New York, 1969; 21–132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.