Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 7
132
Views
5
CrossRef citations to date
0
Altmetric
ARTICLES

Rheological behavior of physicochemical sludges during methanogenesis suppression and hydrogen production at different organic loading rates

, , , &
Pages 515-522 | Received 20 May 2015, Published online: 04 Mar 2016

References

  • Ruiz-Espinoza, J.E.; Méndez-Contreras, J.M.; Alvarado-Lassman, A.; Martínez-Delgadillo, S.A. Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge. J. Environ. Sci. Health Pt. A 2012, 47(12), 1795–1802.
  • Méndez-Contreras, J.M.; Rendón-Sagardi, J.A.; Ruiz-Espinoza, J.E.; Alvarado-Lassman, A.; Martínez-Delgadillo, S.A. Behavior of the mesophilic and termophilic anaerobic digestion in the stabilization of municipal wastewater sludge (Part 1). Rev. Mex. Ing. Quím. 2009, 8(3), 283–290.
  • López-Escobar, L.A.; Martínez-Hernández, S.; Corte-Cano, G.; Méndez-Contreras, J.M. Influence of organic loading rate on methane production in a CSTR from physicochemical sludge generated in a poultry slaughterhouse. J. Environ. Sci. Health Pt. A 2014, 49(14), 1–8.
  • Lee, D.Y.; Ebie, Y.; Xu, K.Q.; Li, Y.Y.; Inamori, Y. Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresource Technol. 2010, 101(1), 42–47.
  • Jung, K.W.; Kim, D.H.; Kim, S.H.; Shin, H.S. Bioreactor design for continuous dark fermentative hydrogen production. Bioresource Technol. 2011, 102(18), 8612–8620.
  • Noike, T.; Mizuno, O. Hydrogen fermentation of organic municipal wastes. Water Sci. Technol. 2005, 42(12), 155–162.
  • Lloyd, T.A.; Wyman, Ch.E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technol. 2005, 96(18), 1967–1977.
  • Valdez-Vazquez, I.; Sparling, R.; Risbey, D.; Rinderknecht-Seijas, N.; Poggi-Varaldo, H.M. Hydrogen generation via anaerobic fermentation of paper mill wastes. Bioresource Technol. 2005, 96(17), 1907–1913.
  • Buitrón, G; Carvajal, C. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Bioresource Technol. 2010, 101(23), 9071–9077.
  • Hernández-Mendoza C.E; Buitrón, G. Suppression of methanogenic activity in anaerobic granular biomass for hydrogen production. J. Chem. Technol. Biotechnol. 2014, 89, 143–149.
  • Mu, Y.; Chen, X. H.; Yu, H. Q. Rheological properties of anaerobic hydrogen-producing flocs. Biochem. Eng. J. 2007, 34, 87–91.
  • Jiménez-Cisneros, B.; Chávez-Mejía, A. Treatment of Mexico City wastewater for irrigation purposes´. Environ Technol. 1997, 18(7), 721–729.
  • Okamoto, M.; Miyahara, T.; Mizuno, O.; Noike, T. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci. Technol. 2000, 41(3), 25–32.
  • Lin, C.Y.; Lay, C.H. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Inter. J. Hydrogen Ener. 2004, 29(1), 41–45.
  • Fan, Y.; Li, C.; Lay, J.J.; Hou, H.; Zhang, G. Optimization of initial substrate and pH levels for germination of sporing hydrogen—producing anaerobes in cow dung compost. Biores. Technol. 2004, 91, 189–193.
  • Ueno, Y.; Kawai, T.; Sato, S.; Otsuka, S.; Morimoto, M. Biological production of hydrogen from cellulose by natural anaerobic microflora. J. Ferment. Bioeng. 1995, 79(4), 395–397.
  • Zhang, T.; Liu, H.; Fang, H.H.P. Biohydrogen production from starch in wastewater under thermophilic condition. J. Environ. Management. 2003, 69(2), 149–156.
  • Méndez-Contreras, J.M.; Ruiz-Espinoza, J.E.; Alvarado-Lassman, A.; Martínez- Delgadillo, S.A. In Rheological kinetics parameters during the anaerobic co-digestion of wastewater sludge-ofMSW, Proceedings of the Sardinia 2011, Thirteenth International Waste Management and Landfill Symposium, Cagliari, Italy, Oct. 3–7, 2011; S. Margherita di Pula, Eds.; CISA: Environmental Sanitary Engineering Centre, Italy, 2011.
  • Eshtiaghi, N.; Markis, F.; Yap, S.D.; Baudez, J.C.; Slatte, P. Rheological characterisation of municipal sludge: A review. Waster Res. 2013, 47(15), 5493–5510.
  • Baudez, J.C.; Markis, F.; Eshtiaghi, N.; Slatter, P.T. The rheological behavior of anaerobic digested sludge. Water Res. 2011, 45(17), 5675–5680.
  • Verma, M.; Satinder, K.B.; Riopel, A.R.; Tyagi, R.D.; Surampalli, R.Y. Pre-treatment of wastewater sludge biodegradability and rheology study. Environ. Technol. 2007, 28(3), 273–284.
  • Travnicek, P.; Vitez, T.; Junga, P.; Krcalova, E.; Sevcikova, J.; Marecek, J.; Machal, P. Rheological measurements of disintegrated activated sludge. Polish J. Environ. Studies. 2013, 22(4), 1209–1212.
  • Ayol, A.; Dentel, S.K.; Filibeli, A. Rheological Characterization of Sludges during Belt Filtration Dewatering Using an Immobilization Cell. J. Environ. Eng. 2010, 136(9), 992–999.
  • Dentel, S.K.; Dursun, D. Shear sensitivity of digested sludge: Comparison of methods and application in conditioning and dewatering. Water Res. 2009, 43(18), 4617–4625.
  • Giordano, C.; Pollice, A.; Laera, G.; Saturno, D.; Mininni G. Influence of solid retention time on the rheology of MBR sludge. Water Sci. Technol. 2007, 56(8), 151–159.
  • Chen, B.H.; Lee, S.J.; Lee, D.J.; Spinosa, L. Rheological behavior of wastewater sludge following cationic polyelectrolyte flocculation. Drying Technol. 2006, 24(10), 1289–1295.
  • Yen, P.S.; Chen, L.C.; Chien, C.Y.; Wu, R.M.; Lee, D.J. Network strength and dewaterability of flocculated activated sludge. Water Res. 2002, 36(3), 539–550.
  • Wichmann, K.; Riehl, A. Mechanical properties of waterwork sludges-shear strength. Water Sci. Technol. 1997, 36(11), 43–50.
  • Farno, E.; Baudez, J.C.; Parthasarathy, R.; Eshtiaghi, N. Rheological characterization of thermally-treated anaerobic digested sludge: Impact of temperature and thermal history. Water Res. 2014, 1(56), 156–161.
  • Dieudé-Fauvel, E.; Héritier, P.; Chanet, M.; Girault, R.; Pastorelli, D.; Guibelin, E.; Baudez, J.C. Modelling the rheological properties of sludge during anaerobic digestion in a batch reactor by using electrical measurements. Water Res. 2014, 51(15), 104–112.
  • Slatter, P.T. The rheological characterization of sludges. Water Sci. Technol. 1997, 36(11), 9–18.
  • Khalili-Garakani, A.H.; Mostoufi, N.; Sadeghi, G.; Hosseinzadeh, M.; Fatourechi, M.; Sarrafzadeh, M.H.; Mehrnia, M.R. Comparison between different models for rheological characterisation of activated sludge. Iranian Journal of Environmental Health Sciences & Engineering. 2011, 8(3), 255–264.
  • Martin, I.; Pidou, M.; Soares, A.; Judd, S.; Jefferson, B. Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environ. Technol. 2011, 32(9), 921–932.
  • Clesceri, L.S.; Greenberg, A.E.; Eaton, A.D. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association/American Water Works Association/Water Environment Federation: Washington DC, USA, 1998.
  • Civelekoglu, G.; Kalkan, F.C. Rheological characterization of biological treatment sludges in a municipal wastewater treatment plant. Water Environ. Res. 2010, 82(9), 782–789.
  • Seyssiecq, I.; Ferrasse, J.H.; Roche, N. State-of-the-art: rheological characterization of wastewater treatment sludge. Biochem. Eng. J. 2003, 16, 41–56.
  • Casson, N. The Rheology of Disperse Systems. Pergamon Press: London, UK, 1959
  • Montgomery, D.C. Diseño y Análisis de Experimentos. 1st Ed.; Grupo Editorial Iberoamérica S.A. de C.V.: México, 1991; 45–222.
  • Voolapalli, R.K.; Stuckey, D.C. Hydrogen production in anaerobic reactors during shock loads—influence of formate production and H2 kinetics. Water Res. 2001, 35(7), 1831–1841.
  • Garcia, J.L.; Patel, B.K.C.; Ollivier, B. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe. 2000, 6(4), 205–226.
  • Valdez-Vazquez, I; Poggi-Varaldo, H.M. Hydrogen production by fermentative consortia. Renew. Sust. Energ. Rev. 2009, 13(5), 1000–1013.
  • Phelps, T.J; Zeikus, J.G. Influence of pH on terminal carbon metabolism in anoxicsediments from a mildly acidic lake. Appl. Environ. Microbiol. 1984, 48(6), 1088–1095.
  • Hafez, H.; Nakhla, G.; Naggar, M.H.E.; Elbeshbishy, E.; Baghchehsaraee, B. Effect of organic loading on a novel hydrogen bioreactor. Int. J. Hydrogen Energ. 2010, 35(1), 81–92.
  • Bartacek, J.; Zabranska, J.; Lens, P.N.L. Developments and constraints in fermentative hydrogen production. Biofuel. Bioprod. Bior. 2007, 1(3), 201–214.
  • Linke, B. Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass Bioenerg. 2006, 30(10), 892–896.
  • Castelló, E.; Perna, V.; Wenzel, J.; Borzacconi, L.; Etchebehere, C. Microbial community composition and reactor performance during hydrogen production in a UASB reactor fed with raw cheese whey inoculated with compost. Water Sci. Technol. 2011, 64(11), 2265–2273.
  • Cota-Navarro, C.B.; Carrillo-Reyes, J.; Davila-Vazquez, G.; Alatriste-Mondragon, F.; Razo-Flores, E. Continuous hydrogen and methane production in a two-stage cheese whey fermentation system. Water Sci. Technol. 2011, 64(2), 367–374.
  • Bouallagui, H.; Haouari, O.; Touhami, Y.; Cheikh, R.B.; Marouani, L.; Hamdi, M. Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste. Proc. Biochem. 2004, 39(12), 2143–2148.
  • Mori, M.; Seyssiecq, I.; Roche, N. Rheological measurements of sewage sludge for various solids concentrations and geometry. Proc. Biochem. 2006, 41(7), 1656–1662.
  • Moreau, A.A.; Ratkovich, N.; Nopens, I.; Van der Graff, J.H.J.M. The (in) significance of apparent viscosity in full-scale municipal membrane bioreactors. J. Membr. Sci. 2009, 340(1–2), 249–256.
  • Lotito, V.; Spinosa, L.; Mininni, G.; Antonacci, R. The rheology of sewage sludge at different steps of treatment. Water Sci. Technol. 1997, 36(11), 79–85.
  • Abu-Jdayil, B.; Banat, F.; Al-Sameraiy, M. Steady rheological properties of rotating biological contactor (RBC) Sludge. J. Water Res. Protect. 2010, 2(1), 1–7.
  • Ratkovich, N.; Horn, W.; Helmus, F.P.; Rosenberger, S.; Naessens, W.; Nopens, I.; Bentzen, T.R. Activated sludge rheology: A critical review on data collection and modelling. Water Res. 2013, 47, 463–482.
  • Ruiz-Espinoza, J.E. Desarrollo de estrategias para el desempeño de alta eficiencia y control del proceso de co-digestión anaerobia mesofílica de lodos residuales-residuos sólidos orgánicos municipales; In PhD Thesis. Universidad Autónoma Metropolitana Press: México D.F., México, 2013.
  • Dentel, S.K.; Dursun, D. Shear sensitivity of digested sludge: Comparison of methods and application in conditioning and dewatering. Water Res. 2009, 43(18), 4617–4625.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.