Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 7
301
Views
1
CrossRef citations to date
0
Altmetric
ARTICLES

The application of exfoliated graphite electrode in the electrochemical degradation of p-nitrophenol in water

, &
Pages 571-578 | Received 28 Sep 2015, Published online: 16 Mar 2016

References

  • Paca, J.; Halecky, M.; Karlova, P.; Gelbicova, T.; Kozliak, E. Interaction among mononitrophenol isomers during biodegradation of their mixtures. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2015, 50, 109–118.
  • Arora, P.K.; Srivastava, A.; Singh, V.P. Bacterial degradation of nitrophenols and their derivatives. J. Hazard. Mater. 2014, 266, 42–59.
  • Zhang, D-P.; Wu, W-L.; Long, H-Y.; Liu, Y-C.; Yang, Z-S. Voltammetric behavior of o-Nitrophenol and damage to DNA. Int. J. Mol. Sci. 2008, 9, 316–326.
  • Kristanti, R.A.; Kanbe, M.; Hadibarata, T.; Toyama, T.; Tanaka, Y.; Mori, K. Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza. Environ. Sci. Pollut. Res. 2012, 19, 1852–1858.
  • Harrison, M.A.J.; Barra, S.; Borghesi, D.; Vione, D.; Arsene, C.; Olariu, R.I. Nitrated phenols in the atmosphere: a review. Atmos. Environ. 2005, 39, 231–248.
  • Bhatti, Z.I.; Toda, H.; Furukawa, K. p-Nitrophenol degradation by activated sludge attached on non-wovens. Water Res. 2002, 36, 1135–1142.
  • Dapeng, L.I.; Juihui, Q.U. The progress of catalytic technologies in water purification: A review. J. Environ. Sci. 2009, 21, 713–719.
  • Martínez-Huitle, C.A. Electrocatalysis in wastewater treatment: Recent mechanism advances Quim. Nova 2011, 34, 850–858.
  • Szpyrkowicz, L.; Juzzolino, C.; Kaul, S.N.; Daniele, S. Electrochemical oxidation of dyeing baths bearing disperse dyes. Ind. Eng. Chem. Res. 2000, 39, 3241–3248.
  • Chen, X.; Chen, G.; Yue, P.L. Anodic oxidation of dyes at novel Ti/B diamond electrodes. Chem. Eng. Sci. 2003, 58, 995–1001.
  • Pillai, I.M.S.; Gupta, A.K; Tiwari, M.K. Multivariate optimization for electrochemical oxidation of methyl orange: Pathway identification and toxicity analysis. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2015, 50, 301–310.
  • Rivera, M.C.; Jimenez, M.M.D.; Gonzalez, M.P.E. Degradation of the textile dyes basic yellow 28 and Reactive black 5 using diamond and metal alloys electrodes. Chemosphere 2004, 55, 1–10.
  • Fernandes, A.; Morao, A.; Magrinho, M.; Lopes, A.; Gonçalves, I. Electrochemical degradation of C. I. Acid Orange 7. Dyes Pigm 2004, 61, 287–296.
  • Li, L-T.; Hao, L-N.; Zhang, J.; Wang, G-C.; Xie, Q. Preparation and electrochemical properties of the activated carbon doped with manganese. New Carbon Mater. 2008, 23, 269–274.
  • Xiang, D.; Su, Z.; Zhao, Z.; Yang, L.; Yang, Q-H. Preparation of a SWCNT-DNA modified electrode and its electrochemical detection property. New Carbon Mater. 2009, 24, 183–186.
  • Chu, Y.Q.; Ma, C.A.; Zhu, Y.H. Electrocatalytic reduction of oxygen on carbon nanotubes electrode. Acta Phys-Chim. Sin. 2004, 20, 331–335.
  • Kang, F.Y.; Zheng, Y.P.; Wang, H.N.; Nishi, Y.; Inagaki, M. Effect of preparation conditions on the characteristic of exfoliated graphite, New Carbon Mater. 2002, 40, 1575–1581.
  • Li, J.H.; Liu, Q.; Da, H.F. Preparation of sulfur-free exfoliated graphite at a low exfoliation temperature. Mater. Lett. 2007, 61, 1832–1834.
  • Afanasov, I.M.; Savchenko, D.V.; Ionov, S.G.; Rusakov, D.A.; Seleznev, A.N.; Avdeev, V.V. Thermal conductivity and mechanical properties of expanded graphite. Inorg. Mater. 2009, 45, 486–490.
  • Ramesh, P.; Suresh, G.S.; Sampath, S. Selective determination of dopamine using unmodified exfoliated graphite electrodes. J. Electroanal. Chem. 2004, 561, 173–180.
  • Ntsendwana, B.; Mamba, B.B.; Sampath, S.; Arotiba, O.A. Degradation of trichloroethylene by electrochemical oxidation using exfoliated graphite-diamond composite electrode. RSC Adv. 2013, 3, 24473–24483.
  • Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M. A graphene oxide basedelectrochemical sensor for sensitive determination of 4-nitrophenol. J. Hazard. Mater. 2011, 201–202, 250–259.
  • Canizares, P.; Saez, C.; Lobato, J.; Rodrigo, M.A. Electrochemical treatment of 4-nitrophenol aqueous wastes using boron doped diamond anodes. Ind. Eng. Chem. Res. 2004, 43, 1944–1951.
  • Ehlerova, J.; Trevani, L.; Sedlbauer, J.; Tremaine, P. Spectrophotometric determination of the ionization constants of aqueous nitrophenols at temperatures up to 225°C. J. Solution Chem. 2008, 37, 857–874.
  • Wang, K.H.; Hsieh, Y.H.; Chen, L.J. The heterogeneous photocatalytic degradation, intermediates and mineralization for the aqueous solution of cresols and nitrophenols. J. Hazard. Mater. 1998, 59, 251–260.
  • Wei, L.; Zhu, H.; Mao, X.; Gan, F. Electrochemical oxidation process combined with UV photolysis for the mineralization of nitrophenol in saline wastewater. Sep. Purif. Technol. 2011, 77, 18–25.
  • Ntsendwana, B.; Mamba, B.B.; Sampath, S.; Arotiba, O.A. Photoelectrochemical oxidation of p-nitrophenol on Exfoliated Graphite-TiO2 electrode. Photochem. Photobiol. Sci. 2013, 12, 1091–1102.
  • Petukhov, A.V. Effect of molecular mobility on kinetics of an electrochemical Langmuir-Hinshelwood reaction. Chem. Phys. Lett. 1997, 277, 539–544.
  • Kusvuran, E.; Samil, A.; Atanur, O.M.; Erbatur, O. Photocatalytic degradation of di- and tri-substituted phenolic compounds in aqueous solution by TiO/UV. Appl. Catal. B-Environ. 2005, 58, 211–216.
  • Dai, Q.; Xia, Y.; Jiang, L.; Li, W.; Wang, J.; Chen, J. Enhanced degradation of aspirin by electrochemical oxidation with modified PbO2 electrode and hydrogen peroxide. Int. J. Electrochem. Sci. 2012, 7, 12895–12906.
  • Fontmorin, J.M.; Fourcade, F.; Geneste, F.; Floner, D.; Huguet, S.; Amrane, A. Combined process for 2,4-dichlorophenoxyacetic acid treatment-coupling of an electrochemical system with a biological treatment. Biochem. Eng. J. 2013, 70, 17–22.
  • Shmychkova, O.; Luk'yanenko, T.; Yakubenko, A.; Amadelli, R.; Velichenko, A. Electrooxidation of some phenolic compounds at Bi-doped PbO. Appl. Catal. B-Environ. 2015, 162, 346–351.
  • Jiang, Y.; Hu, Z.; Zhou, M.; Zhou, L.; Xi, B. Efficient degradation of p-nitrophenol by electro-oxidation on Fe doped Ti/TiO2 nanotube/PbO2 anode. Sep. Purif. Technol. 2014, 128, 67–71.
  • Tasic, Z.; Gupta, V.K.; Antonijevic, M.M. The mechanism and kinetics of degradation of phenolics in wastewaters using electrochemical oxidation. Int. J. Electrochem. Sci. 2014, 9, 3473–3490.
  • Wu, W.; Huang, Z-H.; Lima, T-T. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. App. Catal. A: Gen. 2014, 480, 58–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.