Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 8
121
Views
3
CrossRef citations to date
0
Altmetric
ARTICLES

Effect of experimental variables onto Co2+ and Sr2+ sorption behavior in red mud-water suspensions

, , , &
Pages 679-690 | Received 12 Nov 2015, Published online: 18 Apr 2016

References

  • Ojovan, M.I.; Lee, W.E. An Introduction to Nuclear Waste Immobilization, 2nd ed.; Elsevier: Amsterdam, 2013.
  • Slaper, H.; Blaauboer, R.A. probabilistic risk assessment for accidental releases from nuclear power plants in Europe. J. Hazard. Mater. 1998, 61(1–3), 209–215.
  • Abdel Rahman, R.O.; Ibrahium, H.A.; Hung, Y-T. Liquid radioactive wastes treatment: A review. Water 2011, 3, 551–565.
  • IAEA. Combined Methods for Liquid Radioactive Waste Treatment; IAEA-TECDOC-1336, IAEA: Vienna, 2003.
  • Feng, D.; Van Deventer, J.S.J.; Aldrich, C. Removal of pollutants from acid mine wastewater using metallurgical byproduct slags. Sep. Purif. Technol. 2004, 40(1), 61–67.
  • Lee, T.Y.; Park, J.W.; Lee, J.H. Waste green sands as a reactive media for the removal of zinc from water. Chemosphere 2004, 56(6), 571–581.
  • Hui, K.S.; Chao, C.Y.H.; Kot, S.C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J. Hazard. Mater. 2005, 127(1–3), 89–101.
  • Alinnor, J. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel 2006, 86(5–6), 853–857.
  • Mohan, S.; Gandhimathi, R. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J. Hazard. Mater. 2009, 169(1–3), 351–359.
  • Park, J-H.; Cho, J-S.; Ok, Y.S.; Kim, S-H.; Kang, S-W.; Choi, I-W.; Heo, J-S.; DeLaune, R.D.; Seo, D-C. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment. J. Environ. Sci. Health A. 2015, 50(11), 1194–1204.
  • Wang, L-H.; Lin, C-I. The removal of heavy metal ions from spiked aqueous solutions using solid wastes - comparison of sorption capability. J. Taiwan. Inst. Chem. Eng. 2010, 41(5), 585–590.
  • Belviso, C.; Cavalcante, F.; Di Gennaro, S.; Lettino, A.; Palma., A.; Ragone, P.; Fiore, S. Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite. J. Environ. Manage. 2014, 137(1), 16–22.
  • Collins, R.; Clark, M.; Payne, T. Solid phases responsible for MnII, CrIII, CoII, Ni, CuII and Zn immobilization by a modified bauxite refinery residue (red mud) at pH 7.5. Chem. Eng. J. 2014, 236, 419–429.
  • Apak, R.; Atun, G.; Güçlü, K.; Tütem, E. Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents II. Usage of coal fly ash. J. Nucl. Sci. Technol. 1996, 33, 396–402.
  • Coleman, N.; Brassington, D.; Raza, A.; Mendham, A. Sorption of Co2+ and Sr2+ by waste-derived 11 Å tobermorite. Waste. Manage. 2006, 26, 260–267.
  • Tsutsumi, T.; Nishimoto, S.; Kameshima, Y.; Miyake, M. Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption. J. Hazard. Mater. 2014, 266(5), 174–181.
  • Li, K.; Pang, X. Sorption of radionuclides by cement-based barrier materials. Cement Concrete Res. 2014, 65, 52–57.
  • Apak, R.; Atun, G.; Guclu, K.; Tutem, E.; Kskin, G. Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents. I. Usage of bauxite wastes (red muds). J. Nucl. Sci. Technol. 1995, 32(10), 1008–1017.
  • Clark, M.W.; Akhurst, D.J.; Fergusson, L. Removal of radium from groundwater using a modified bauxite refinery residue. J. Environ. Qual. 2011, 40(1), 1835–1843.
  • Clark, M.W.; Harrison, J.J.; Payne, T.E. The reversibility of U and thorium binding to modified bauxite refinery residue. J. Colloid. Interf. Sci. 2011, 356(2), 699–705.
  • Nadaroglu, H.; Kalkan, E. Removal of cobalt (II) ions from aqueous solution by using alternative adsorbent industrial red mud waste material. Int. J. Phys. Sci. 2012, 7(9), 1386–1394.
  • Milenković, A.; Smičiklas, I.; Marković, J.; Vukelić, N. Immobilization of 60Co and 90Sr ions using red mud from aluminum industry. Nucl. Technol. Radiat. 2014, 29(1), 79–87.
  • Clark, M.W.; Harrison, J.J.; Payne, T.E.; Comarmond, M.J.; Reichelt-Brushett, A.J. Reversibility of uranium and thorium binding on a modified bauxite refinery residue: The effects of aging temperature. Appl. Geochem. 2015, 53, 79–90.
  • Liu, Y.; Lin, C.; Wu, Y. Characterization of red mud derived from a combined Bayer process and bauxite calcination method. J. Hazard. Mater. 2007, 146(1–2), 255–261.
  • Wang, S.; Ang, H.M.; Tadé, M.O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 2008, 72(11), 1621–1635.
  • Rubinos, D.A.; Barral, M.T. Fractionation and mobility of metals in bauxite red mud. Environ. Sci. Pollut. Res. 2013, 20(11), 7787–7802.
  • Varga, K.; Hirschberg, G.; Németh, Z.; Myburg, G.; Schunk, J.; Tilky, P. Accumulation of radioactive corrosion products on steel surfaces of VVER-type nuclear reactors. II. 60Co. J. Nucl. Mater. 2001, 298(3), 231–238.
  • Valsala, T.P.; Joseph, A.; Sonar, N.L.; Sonavane, M.S.; Shah, J.G.; Raj, K.; Venugopal, V. Separation of strontium from low level radioactive waste solutions using hydrous manganese dioxide composite materials. J. Nucl. Mater. 2010, 404(2), 138–143.
  • Smiljanić, S.; Smičiklas, I.; Perić-Grujić, A.; Lončar, B.; Mitrić, M. Rinsed and thermally treated red mud sorbents for aqueous Ni2+ ions. Chem. Eng. J. 2010, 162(1), 75–83.
  • Sumner, M. E.; Miller, W. P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis Part 3 Chemical Methods. Sparks, D. L.; Page, A. L.; Helmke, P. A.; Loeppert, R. H.; Soltanpour, P. N.; Tabatabai, M. A.; Johnston C. T.; Sumner M. E., Eds; Soil Science Society of America Book Series number 5, Soil Science Society of America, Inc., American Society of Agronomy, Inc.: Madison, WI, 1996; 1201–1229.
  • Day, P.R. Particle fractionation and particle-size analysis. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; C.A. Black Ed; American Society of Agronomy, Soil Science Society of America: Madison, WI, 1965; 545–567.
  • Gräfe, M.; Power, G.; Klauber, C. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy 2011, 108(1–2), 60–79.
  • Park, Y.; Lee, Y.C.; Shin, W.S.; Choi, S.J. Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chem. Eng. J. 2010, 162(2), 685–695.
  • Lazić, S.; Vuković, Ž. Removal of 137Cs and 60Co from real radioactive waste solution by precipitation-flocculation method. Radioact. Waste Manage. Nucl. Fuel Cycle 1991, 14(4), 241–250.
  • Smičiklas, I.; Smiljanić, S.; Perić-Grujić, A.; Šljivić-Ivanović, M.; Antonović, D. The influence of citrate anion on Ni(II) removal by raw red mud from aluminum industry. Chem. Eng. J. 2013, 214, 327–335.
  • Snars, K.E.; Gilkes, R.J.; Wong, M.T.F. The liming effect of bauxite processing residue (red mud) on sandy soils. Aust. J. Soil. Res. 2004, 42(3), 321–328.
  • Adamson, A.W.; Gast, A.P. Physical Chemistry of Surfaces, 6th ed.; John Wiley and Sons: New York, NY, 1997.
  • Stumm, W.; Morgan, J.J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley and Sons: New York, NY, 1996.
  • Freire, T.S.S.; Clark, M.W.; Comarmond, M. J.; Payne, T.E.; Reichelt-Brushett, A.J.; Thorogood, G.J. Electroacoustic isoelectric point determinations of bauxite refinery residues: different neutralization techniques and minor mineral effects. Langmuir 2012, 28(32), 11802–11811.
  • Liu, Y.; Naidu, R.; Ming, H. Surface electrochemical properties of red mud (bauxite residue): Zeta potential and surface charge density. J. Colloid. Interf. Sci. 2013, 394, 451–457.
  • Snars, K.E.; Gilkes, R.J. Evaluation of bauxite residues (red muds) of different origins for environmental applications. Appl. Clay. Sci. 2009, 46(1), 13–20.
  • Smičiklas, I.; Smiljanić, S.; Perić-Grujić, A.; Šljivić-Ivanović, M.; Mitrić, M.; Antonović, D. Effect of acid treatment on red mud properties with implications on Ni(II) sorption and stability. Chem. Eng. J. 2014, 242, 27–35.
  • Brown, G.E.; Parks, G.A. Sorption of trace elements on mineral surfaces: Modern perspectives from spectroscopic studies and comments on sorption in the marine environment. Int. Geol. Rev. 2001, 43(11), 963–1074.
  • Landry, C.; Koretsky, C.; Lund, T.; Schaller, M.; Das, S. Surface complexation modeling of Co(II) adsorption on mixtures of hydrous ferric oxide, quartz and kaolinite. Geochim. Cosmochim. Acta. 2009, 73(13), 3723–3737.
  • Ma, B.; Oh, S.; Shin, W.S.; Choi, S-J. Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination 2011, 276(1–3), 336–346.
  • Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil. Sci. Plant. Nutr. 2010, 10(3), 268–292.
  • Yuzer, H.; Kara, M.; Sabah, E.; Celik, M.S. Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems. J. Hazard. Mater. 2008, 151(1), 33–37.
  • Kinniburgh, D.G.; Jackson, M.L.; Syers, J.K. Adsorption of alkaline earth, transition, and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil. Sci. Soc. Am. J. 1976, 40(5), 796–799.
  • Kosmulski, M.; Maczka, E.; Jartych, E.; Rosenholm, J.B. Synthesis and characterization of goethite and goethite–hematite composite: experimental study and literature survey. Adv. Colloid. Interf. Sci. 2003, 103(1), 57–76.
  • Kosmulski, M. Surface Charging and Points of Zero Charge; CRC Press: Boca Raton, FL, 2009.
  • Kosmulski, M. The significance of the difference in the point of zero charge between rutile and anatase. Adv. Colloid. Interf. Sci. 2002, 99(3), 255–264.
  • Magdi Selim H. Competitive Sorption and Transport of Heavy Metals in Soils and Geological Media; CRC Press: Boca Raton, FL, 2012.
  • Plazinski, W.; Rudzinski, W.; Plazinska, A. Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv. Colloid. Interf. Sci. 2009, 152(1–2), 2–13.
  • Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process. Biochem. 1999, 34(5), 451–465.
  • Galamboš, M.; Krajňák, A.; Rosskopfová, O.; Viglašová, E.; Adamcová, R.; Rajec, P. Adsorption equilibrium and kinetic studies of strontium on Mg-bentonite, Fe-bentonite and illite/smectite. J. Radioanal. Nucl. Chem. 2013, 298(2), 1031–1040.
  • Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I. Theor. J. Colloid. Interf. Sci. 1974, 47 (3), 755–765.
  • Langmuir, I. The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 1918, 40(9), 1361–1403.
  • Jeon, C.; Höll, W. Application of the surface complexation model to heavy metal sorption equilibria onto aminated chitosan. Hydrometallurgy 2004, 71(3–4), 421–428.
  • Cerqueira, B.; Covelo, E.F.; Andrade, L.; Vega, F.A. The influence of soil properties on the individual and competitive sorption and desorption of Cu and Cd. Geoderma 2011, 162(1–2), 20–26.
  • Baes, C.F.; Mesmer, R.E. The Hydrolysis of Cations; John Wiley and Sons: New York, NY, 1976.
  • Gutierrez, M.; Fuentes, H.M. Competitive adsorption of cesium, cobalt and strontium in conditioned clayey soil suspensions. J. Environ. Radioact. 1991, 13(4), 271–282.
  • Marešová, J.; Pipíška, M.; Rozložník, M.; Horník, M.; Remenárová, L.; Augustín, J. Cobalt and strontium sorption by moss biosorbent: Modeling of single and binary metal systems. Desalination 2011, 266(1–3), 134–141.
  • Park, Y.; Shin, W.S.; Choi, S.J. Removal of cobalt and strontium from groundwater by sorption onto fishbone. J. Radioanal. Nucl. Chem. 2013, 295(1), 789–799.
  • Sposito, G. The Chemistry of Soil, 2nd ed.; Oxford University Press: New York, NY, 2008.
  • Furia, T.E. CRC Handbook of Food Additives; CRC Press: Boca Raton, FL, 1973.
  • Pace, M.N.; Mayes, M.A.; Jardine, P.M.; McKay, L.D.; Yin, X.L.; Mehlhorn, T.L.; Liuc, Q.; Gürleyük, H. Transport of Sr2+ and SrEDTA2− in partially-saturated and heterogeneous sediments. J. Contam. Hydrol. 2007, 91(3–4), 267–287.
  • Jardine, P.M.; Taylor, D.L. Fate and transport of ethylenediaminetetraacetate chelated contaminants in subsurface environments. Geoderma 1995, 67(1–2), 125–140.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.