Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 12
405
Views
6
CrossRef citations to date
0
Altmetric
ARTICLES

Estimated pKa values for the environmentally relevant C1 through C8 perfluorinated sulfonic acid isomers

&
Pages 1018-1023 | Received 16 Dec 2016, Published online: 07 Jul 2016

References

  • Dean, J.A. Lange's Handbook of Chemistry, 15th edition; McGraw-Hill: New York, 1999.
  • Giesy, J.P.; Kannan, K. Perfluorochemical surfactants in the environment. Environ. Sci. Technol. 2002, 36, 146A–152A.
  • Hekster, F.; Laane, R.W.P.M.; deVoogt, P. Environmental and toxicity effects of perfluoroalkylated substances. Rev. Environ. Contam. Toxicol. 2003, 179, 99–121.
  • Condor, J.M.; Hoke, R.A.; deWolf, W.; Russell, M.H.; Buck, R.C. Are PFCAs bioaccumulative? A critical review and comparison with regulatory criteria and persistent lipophilic compounds. Environ. Sci. Technol. 2008, 42, 995–1003.
  • SCI. Perfluorooctane Sulfonate (PFOS): Working Draft Risk Profile; Swedish Chemicals Inspectorate: Stockholm, Sweden, 2006.
  • Rayne, S.; Forest, K.; Friesen, K.J. Congener-specific numbering systems for the environmentally relevant C4 through C8 perfluorinated homologue groups of alkyl sulfonates, carboxylates, telomer alcohols, olefins, and acids, and their derivatives. J. Environ. Sci. Health A. 2008, 43, 1391–1401.
  • Rayne, S.; Forest, K. Comment on “Ab initio study of the structural, electronic, and thermodynamic properties of linear perfluorooctane sulfonate (PFOS) and its branched isomers” by F.J. Torres, V. Ochoa-Herrera, P. Blowers, R. Sierra-Alvarez [Chemosphere. 76 (8) (2009) 1143–1149]. Chemosphere. 2009, 77, 1455–1456.
  • Rayne, S.; Forest, K.; Friesen, K.J. Estimated congener specific gas-phase atmospheric behavior and fractionation of perfluoroalkyl compounds: Rates of reaction with atmospheric oxidants, air-water partitioning, and wet/dry deposition lifetimes. J. Environ. Sci. Health A. 2009, 44, 936–954.
  • Rayne, S.; Forest, K.; Friesen, K.J. Relative gas-phase free energies for the C3 through C8 linear and branched perfluorinated sulfonic acids: Implications for kinetic versus thermodynamic control during synthesis of technical mixtures and predicting congener profile inputs to environmental systems. J. Mol. Struct.: THEOCHEM. 2008, 869, 81–82.
  • Rayne, S.; Forest, K. Congener-specific organic carbon-normalized soil and sediment-water partitioning coefficients for the C1 through C8 perfluoroalkyl carboxylic and sulfonic acids. J. Environ. Sci. Health A. 2009, 44, 1374–1387.
  • Rayne, S.; Forest, K.; Friesen, K.J. Estimated bioconcentration factors (BCFs) for the C4 through C8 perfluorinated alkylsulfonic acid (PFSA) and alkylcarboxylic acid (PFCA) congeners. J. Environ. Sci. Health A. 2009, 44, 598–604.
  • Rayne, S.; Forest, K.; Friesen, K.J. Computational approaches may underestimate pKa values of longer-chain perfluorinated carboxylic acids: Implications for assessing environmental and biological effects. J. Environ. Sci. Health A. 2009, 44, 317–326.
  • Rayne, S.; Forest, K. Theoretical studies on the pKa values of perfluoroalkyl carboxylic acids. J. Mol. Struct.: THEOCHEM. 2010, 949, 60–69.
  • Rayne, S.; Forest, K. Modeling the hydrolysis of perfluorinated compounds containing carboxylic and phosphoric acid ester functions and sulfonamide groups. J. Environ. Sci. Health A. 2010, 45, 432–446.
  • Rayne, S.; Forest, K. Comparative semiempirical, ab initio, and density functional theory study on the thermodynamic properties of linear and branched perfluoroalkyl sulfonic acids/sulfonyl fluorides, perfluoroalkyl carboxylic acid/acyl fluorides, and perhydroalkyl sulfonic acids, alkanes, and alcohols. J. Mol. Struct.: THEOCHEM. 2010, 941, 107–118.
  • Rayne, S.; Forest, K. A new class of perfluorinated acid contaminants: Primary and secondary substituted perfluoroalkyl sulfonamides are acidic at environmentally and toxicologically relevant pH values. J. Environ. Sci. Health A. 2009, 45, 1388–1399.
  • Rayne, S.; Forest, K.; Friesen, K.J. Linear free energy relationship based estimates for the congener specific relative reductive defluorination rates of perfluorinated alkyl compounds. J. Environ. Sci. Health A. 2009, 44, 866–879.
  • Brooke, D.; Footitt, A.; Nwaogu, T.A. Environmental Risk Evaluation Report: Perfluorooctanesulphonate (PFOS); United Kingdom Environment Agency, Chemicals Assessment Section: Wallingford, UK, 2004.
  • Stewart, J.J.P. MOPAC 2009; Available at http://openmopac.net (accessed Dec 2015).
  • Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007, 13, 1173–1213.
  • Carreira, L.A.; Hilal, S.; Karickhoff, S.W. Estimation of chemical reactivity parameters and physical properties of organic molecules using SPARC. In Theoretical and Computational Chemistry—Quantitative Treatment of Solute/Solvent Interactions; Politzer, P., Murray, J.S., Eds.; Elsevier Publishers: St. Louis, MO, USA, 1994.
  • Hilal, S.; Karickhoff, S.W. A rigorous test for SPARC's chemical reactivity models: Estimation of more than 4300 ionization pKas. Quant. Struct.-Act. Relat. 1995, 14, 348–355.
  • Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comp. Sci. 1988, 28, 31–36.
  • Weininger, D.; Weininger, A.; Weininger, J.L. SMILES. 2. Algorithm for generation of unique SMILES notation. J. Chem. Inf. Comp. Sci. 1989, 29, 97–101.
  • Yoshioka, K. KyPlot as a tool for graphical data analysis. In Compstat: Proceedings in Computational Statistics; Hardle, W., Ronz, B., Eds.; Springer: New York, NY, USA, 2002.
  • Lide, D.R. CRC Handbook of Chemistry and Physics, Internet Version, 87th edition; Taylor and Francis: Boca Raton, FL, 2007.
  • Yan, J.; Springsteen, G.; Deeter, S.; Wang, B. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols—It is not as simple as it appears. Tetrahedron 2004, 60, 11205–11209.
  • Wise, W.M.; Brandt, W.W. An investigation of some hydroxamic acids. J. Am. Chem. Soc. 1955, 77, 1058–1059.
  • Bell, R.P.; Higginson, W.C.E. The catalyzed dehydration of acetaldehyde hydrate, and the effect of structure on the velocity of protolytic reactions. Proc. Royal. Soc. 1949, 197, 141–159.
  • Jencks, W.P.; Carriuolo, J. Reactivity of nucleophilic reagents toward esters. J. Am. Chem. Soc. 1960, 82, 1778.
  • Everett, A.J.; Minkoff, G.J. The dissociation constants of some alkyl and acyl hydroperoxides. T. Faraday Soc. 1953, 49, 410–414.
  • Burkhard, R.K.; Sellers, D.E.; DeCou, F.; Lambert, J.L. The pKa's of aromatic sulfinic acids. J. Org. Chem. 1959, 24, 767–769.
  • Hammett, L.P. Physical Organic Chemistry; McGraw-Hill Book Co., Inc.: New York, 1940.
  • Leito, I.; Kaljurand, I.; Koppel, I.A.; Yagupolskii, L.M.; Vlasov, V.M. Spectrophotometric acidity scale of strong neutral Brønsted acids in acetonitrile. J. Org. Chem. 1998, 63, 7868–7874.
  • Kaljurand, I.; Kutt, A.; Soovali, L.; Rodima, T.; Maemets, V.; Leito, I.; Koppel, I.A. Extension of the self-consistent spectrophotometric basicity scale in acetonitrile to a full span of 28 pKa units: ; Unification of different basicity scales. J. Org. Chem. 2005, 70, 1019–1028.
  • Kutt, A.; Leito, I.; Kaljurand, I.; Soovali, L.; Vlasov, V.M.; Yagupolskii, L.M.; Koppel, I.A.A. Comprehensive self-consistent spectrophotometric acidity scale of neutral Brønsted acids in acetonitrile. J. Org. Chem. 2006, 71, 2829–2838.
  • King, E.J. The ionization constants of taurine and its activity coefficient in hydrochloric acid solutions from electromotive force measurements. J. Am. Chem. Soc. 1953, 75, 2204–2209.
  • Smith, T.L.; Elliot, J.H. Acid-base equilibria in glacial acetic acid. J. Am. Chem. Soc. 1953, 75, 3566–3571.
  • Bruckenstein, S.; Kolthoff, I.M. Acid-baseequilibria in glacial acetic acid. III. Acidity scale. Potentiometric determination of dissociation constants of acids, bases and salts. J. Am. Chem. Soc. 1956, 78, 2974–2979.
  • Bascombe, K.N.; Bell, R.P. Acidity functions of some aqueous acids. J. Chem. Soc. 1959, 1096–1104.
  • Bell, R.P. The Proton in Chemistry; Cornell University Press: Ithaca, NY, 1959.
  • Horyna, J. Eine beziehung zwischen der dissoziationskonstante aromatischer sulfonsauren, deren loslichkeit in schwefelsaure-wasser-gemischen und den saurefunktionen H0 und H− des mediums. Collect. Czech. Chem. Commun. 1959, 24, 1596–1598.
  • Bunnett, J.F.; Buncel, E. Kinetics of the acid-catalyzed hydrolysis of 4-(p-sulfophenylazo)-1-naphthyl methyl ether and 4-(p-sulfophenylazo)-anisole. J. Am. Chem. Soc. 1961, 83, 1117–1123.
  • Dinius, R.H.; Choppin, G.R.N.M.R. Study of the ionization of aryl sulfonic acids. J. Phys. Chem. 1962, 66, 268–270.
  • Bonner, O.D.; Torres, A.L. The determination of the ionization constants of some sulfonic acids by Raman measurements. J. Phys. Chem. 1965, 69, 4109–4112.
  • Pietrzyk, D.J.; Belisle, J. Acidity of aromatic sulfonic acids and their use as titrants in nonaqueous solvents. Anal. Chem. 1966, 38, 969–973.
  • Clarke, J.H.R.; Woodward, L.A. Raman spectrophotometric determination of the degrees of dissociation of methanesulphonic acid in aqueous solution at 25°C. T. Faraday Soc. 1966, 62, 2226–2233.
  • Covington, A.K.; Lilley, T.H. Ionization of methanesulphonic acid in aqueous solution at 25°C by proton magnetic resonance measurements T. Faraday Soc. 1967, 63, 1749–1754.
  • Kolthoff, I.M.; Chantooni, M.K.; Bhowmik, S.J. Dissociation constants of uncharged and monovalent cation acids in dimethyl sulfoxide. J. Am. Chem. Soc. 1968, 90, 23–28.
  • Dawber, J.G. The degrees of dissociation of methanesulphonic acid from acidity function data. Chem. Commun. 1968, 58–60.
  • Reeves, R.L.; Kaiser, R.S. Protonation of arylsulfonates in aqueous sulfuric acid. Apparent pKa values of azo dye sulfonic acids from solubility measurements. J. Phys. Chem. 1969, 73, 2279–2286.
  • Gillespie, R.J.; Peel, T.E.; Robinson, E.H. Hammett acidity function for some super acid systems. I. Systems H2SO4-SO3, H2SO4-HSO3F, H2SO4-HSO3Cl, and H2SO4-HB(HSO4)4. J. Am. Chem. Soc. 1971, 93, 5083–5087.
  • Gillespie, R.J.; Peel, T.J. Superacid systems. Adv. Phys. Org. Chem. 1971, 9, 1–24.
  • Benoit, R.L.; Buisson, C. Acides forts dans le dimethylsulfoxide. Electrochim. Acta 1973, 18, 105–109.
  • Covington, A.K.; Thompson, R. Ionization of moderately strong acids in aqueous solution. Part III. Methane-, ethane-, and propanesulfonic acids at 25°C. J. Solut. Chem. 1974, 3, 603–617.
  • Koeberg-Telder, A.; Cerfontain, H.J. Solutes in sulphuric acid. Part VI. A nuclear magnetic resonance study of organic sulphonic acids and 1H nuclear magnetic resonance standards; pKBH determination of sulphonic acids. Chem. Soc. Perkin Trans. 2 1975, 226–229.
  • Cerfontain, H.; Koeberg-Telder, A.; Kruk, C. Solutes in sulfuric acid. Part VII. Ionization of benzenesulfonic acid; determination of pKBH by 13C NMR. Tetrahedron Lett. 1975, 42, 3639–3642.
  • Russell, D.G.; Senior, J.B. Studies on trifluoromethanesulfonic acid. Part I. Trifluoromethanesulfonic acid as a weak acid of the sulfuric acid solvent system. Can. J. Chem. 1974, 52, 2975–2982.
  • McCallum, C.; Pethybridge, A.D. Conductance of acids in dimethyl-sulphoxide II. Conductance of some strong acids in DMSO at 25°C. Electrochim. Acta 1975, 20, 815–818.
  • Guthrie, J.P. Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units. Can. J. Chem. 1978, 56, 2342–2354.
  • Kotz, R.; Clouser, S.; Sarangapani, S.; Yeager, E. Ionization of trifluoromethane sulfonic acid in phosphoric acid: Raman studies. J. Electrochem. Soc. 1984, 131, 1097–1100.
  • Benoit, R.L.; Frechette, M.; Boulet, D. Protonation of purines and related compounds in dimethylsulfoxide and water. Can. J. Chem. 1985, 63, 1228–1232.
  • Bohner, U.; Zundel, G. Sulfonic acid-oxygen base systems as a function of the ΔpKa. J. Phys. Chem. 1985, 89, 1408–1413.
  • Olah, G.; Prakash, G.K.S.; Sommer, J. Superacids; Wiley: New York, 1985.
  • Buttersack, C.; Widdecke, H.; Klein, J. Sulfonic acid ion-exchange resins as catalysts in nonpolar media: II. Influence of conditioning methods on the acidity and catalytic activity. React. Polym. 1987, 5, 181–189.
  • Benoit, R.L.; Frechette, M.; Boulet, D. Solvent effect on the solution, ionization, and structure of aminosulfonic acids. Can. J. Chem. 1988, 66, 3038–3043.
  • Benoit, R.L.; Frechette, M.; Boulet, D. 13C NMR studies on the structure of aminosulfonic acids in dimethyl sulfoxide and water. Magn. Reson. Chem. 1989, 27, 233–236.
  • Benoit, R.L.; Frechette, M.; Boulet, D. Ionization of sulfonic acids and dimethylsulfoxide basicity. A 13C nuclear magnetic resonance and calorimetric study. Can. J. Chem. 1989, 67, 2148–2152.
  • Marziano, N.C.; Tomasin, A.; Tortato, C.J. Equilibria and nitration of sulphonic acids in concentrated sulphuric acid. Chem. Soc. Perkin Trans. 2 1991, 10, 1575–1580.
  • Viggiano, A.A.; Henchman, M.J.; Dale, F.; Deakyne, C.A.; Paulson, J.F. Gas-phase reactions of weak Bronsted bases I−, PO3−, HSO4−, FSO3−, and CF3SO3− with strong Bronsted acids H2SO4, FSO3H, and CF3SO3H. A quantitative intrinsic superacidity scale for the sulfonic acids XSO3H (X = HO, F, and CF3). J. Am. Chem. Soc. 1992, 114, 4299–4306.
  • Smith, J.D.; O'Hair, R.A.J.; Williams, T.D. Gas phase chemistry of sulfonate anions: Basicities and fragmentation reactions. Phosphorus Sulfur 1996, 119, 49–59.
  • Moreau, C.; Durand, R.; Geneste, P.; Mseddi, S. Determination of the acid strength of solid catalysts in water by means of a kinetic tracer. J. Mol. Catal. A 1996, 112, 133–141.
  • Johansson, M.; Klier, K. Surface acidity (Bronsted and Lewis) by high resolution X-ray photoelectron spectroscopy. Top. Catal. 1997, 4, 99–108.
  • Azab, H.A.; Deghaidy, F.S.; Orabi, A.S.; Farid, N.Y. Potentiometric determination of the apparent dissociation constants of some N-substituted 3-amino-2-hydroxypropanesulfonic acids in various hydroorganic media. J. Chem. Engr. Data 1998, 43, 245–248.
  • Steudel, R.; Otto, A.H. Gas-phase acidities of nine sulfur oxoacids of composition [H2,S,On] (n = 1–4). Eur. J. Inorg. Chem. 2000, 4, 617–624.
  • Steudel, R.; Otto, A.H. Geometries, acidities, and dissociation reactions of the gaseous superacids H2S2O3, H2SO5, HSO3F, and HSO3Cl. Eur. J. Inorg. Chem. 2000, 11, 2379–2386.
  • Cox, R.A. Excess acidities. Adv. Phys. Org. Chem. 2000, 35, 1–66.
  • Marziano, N.C.; Ronchin, L.; Tortato, C.; Zingales, A.; Sheikh-Osman, A.A. Acidity and reactivity of trifluoromethanesulfonic acid in liquid and solid acid catalysts. J. Mol. Catal. A 2001, 174, 265–277.
  • Koujout, S.; Brown, D.R. The influence of solvent on the acidity and activity of supported sulfonic acid catalysts. Catal. Lett. 2004, 98, 195–202.
  • Alia, J.M.; Edwards, H.G.M.; Kiernan, B.M. Raman spectroscopy of benzenesulfonic and 4-toluenesulfonic acids dissolved in dimethylsulfoxide. Spectrochim. Acta A 2004, 60, 1533–1542.
  • Serjeant, E.P.; Dempsey, B. Ionization Constants of Organic Acids in Solution; IUPAC Chemical Data Series No. 23. Pergamon Press: Oxford, UK, 1979.
  • Vierke, L.; Berger, U.; Cousins, I.T. Estimation of the acid dissociation constant of perfluoroalkyl carboxylic acids through an experimental investigation of their water-to-air transport. Environ. Sci. Technol. 2013, 47, 11032–11039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.