Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 12
270
Views
8
CrossRef citations to date
0
Altmetric
ARTICLES

Screening of biomethane production potential from dominant microalgae

, , , , , & show all
Pages 1062-1067 | Received 08 Feb 2016, Published online: 13 Jul 2016

References

  • DESA. Department of Economic and Social Affairs. E/2013/50/Rev. 1, ST/ESA/344. World Economic and Social Survey, Sustainable Development Challenges, 2013.
  • Chapman, D. Water Quality Assessment. In Chapman D on behalf of UNESCO, WHO and UNEP; Chapman & Hall: London, 1992; 585p.
  • Naik, S. N.; Goud, V. V.; Rout, P. K.; Dalai, A. K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578–597.
  • Ortigueira, J.; Alves, L.; Gouveia, L.; Moura, P. Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from Scenedesmus obliquus microalga biomass. Fuel 2015, 153, 128–134.
  • Wang, M.; Park, C. Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. Biomass Bioenergy 2015, 80, 30–37.
  • ABARE. Australian Energy Resource Assessment. Chapter 12 Bioenergy. Department of Resources, Energy and Tourism; Geoscience Australia; Australian Bureau of Agricultural and Resource Economics (ABARE): Canberra, 2010.
  • Mairet, F.; Bernard, O.; Ras, M.; Lardon, L.; Steyer, J. P. Modeling anaerobic digestion of microalgae using ADM1. Bioresour. Technol. 2011, 102, 6823–6829.
  • Cohen, M. F.; Hare, C.; Kozlowski, J.; Nelson, T. A.; Grewell, B. J. Wastewater polishing by a channelized macrophyte-dominated wetland and anaerobic digestion of the harvested phytomass. J. Environ. Sci. Health A 2013, 48(3), 319–330.
  • Markou, G.; Angelidaki, I.; Georgakakis, D. Carbohydrate-enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion. Fuel 2013, 111, 872–879.
  • Torres, A.; Fermoso, F. G.; Neumann, P.; Azocar, L.; Jeison, D. Anaerobic digestion as a tool for resource recovery from a biodiesel production process from microalgae. J. Biobased Mater. Bioenergy 2015, 9, 342–349.
  • Ramos-Suárez, J. L.; Carreras, N. Use of microalgae residues for biogas production. Chem. Eng. J. 2014, 242, 86–95.
  • Pacheco, M. M.; Hoeltz, M.; Moraes, M. S. A.; Schneider, R. C. S. Microalgae: Cultivation techniques and wastewater phycoremediation. J. Environ. Sci. Health A 2015, 50(6), 585–601.
  • Ward, A. J.; Lewis, D. M.; Green, F. B. Anaerobic digestion of algae biomass: A review. Algal Res. 2014, 5, 204–214.
  • Frigon, J. C.; Matteau-Lebrun, F.; Hamani Abdou, R.; McGinn, P. J.; O'Leary, S. J. B.; Guiot, S. R. Screening microalgae strains for their productivity in methane following anaerobic digestion. Appl. Energy 2013, 108, 100–107.
  • Mussgnug, J. H.; Klassen, V.; Schlüter, A.; Kruse, O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol. 2010, 150, 51–56.
  • Rippka, R.; Herdman, H. Pasteur culture collection of cyanobacterial strains in axenic culture. In Catalogue & Taxonomic Handbook. Vol. 1. Catalogue of Strains, Institut Pasteur: Paris, France, 1992; 103.
  • Guillard, R. R.; Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 1962, 8, 229–239.
  • APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater, 21st Ed.; American Public Health Association: Washington, DC, 2005.
  • Raposo, F.; Borja, R.; Rincon, B.; Jimenez, A.M. Assessment of process control parameters in the biochemical methane potential of sunflower oil cake. Biomass Bioenergy 2008, 32, 1235–1244.
  • Voigt, J.; Stolarczyk, A.; Zych, M.; Malec, P.; Burczyk, J. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. Plant Sci. 2014, 215–216, 39–47.
  • Chacón-Lee, T. L.; González-Mariño, G. E. Microalgae for “Healthy” Foods-Possibilities and Challenges. Compr. Rev. Food Sci. Food Saf. 2010, 9, 655–675.
  • Domozych, D. S.; Stewart, K. D.; Mattox, K. R. The comparative aspects of cell wall chemistry in the green algae (Chlorophyta). J. Mol. Evol. 1980, 15, 1–12.
  • Takeda, H. Chemical composition of cell walls as a taxonomical marker. J. Plant Res. 1993, 106, 195–200.
  • Deli, J.; Gonda, S.; Nagy, L. Z. S.; Szabó, I.; Gulyás-Fekete, G.; Agócs, A.; Marton, K.; Vasas, G. Carotenoid composition of three bloom-forming algae species. Food Res. Int. 2014, 65, 215–223.
  • Einspahr, K. J.; Peeler, T. C.; Thompson, G. A. Jr. Rapid changes in polyphosphoinositide metabolism associated with the response of Dunaliella salina to hypoosmotic shock. J. Biol. Chem. 1988, 263, 5775–5779.
  • Paerl, H. W.; Otten, T. G. Blooms bite the hand that feeds them. Science 2013, 342, 433–434.
  • Walsby, A. E. The permeability of heterocysts to the gases nitrogen and oxygen. Proc. Roy. Soc. Lond.: Biol. Sci. 1985, 226, 345–366.
  • Murry, M.A.; Wolk, C. P. Evidence that the barrier to the penetration of oxygen into heterocysts depends upon two layers of the cell envelope. Arch. Microbiol. 1989, 151, 469–474.
  • Vargas, M.A.; Rodríguez, H.; Moreno, J.; Olivares, H.; Del Campo, J. A.; Rivas, J.; Guerrero, M. G. Biochemical composition and fatty acid content of filamentous nitrogen-fixing cyanobacteria. J. Phycol. 1998, 34, 812–817.
  • Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416.
  • Becker, E. W. Microalgae in human and animal nutrition. In Handbook of Microalgal Culture; Richmond, A., Ed.; Blackwell Publishing: Oxford, 2004; 312–351.
  • Polakovičová, G.; Kušnír, P.; Nagyová, S.; Mikulec, J. Process integration of algae production and anaerobic digestion. Chem. Eng. Trans. 2012, 29, 1129–1134.
  • Lakaniemi, A.M.; Hulatt, C. J.; Thomas, D. N.; Tuovinen, O. H.; Puhakka, J. A. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass. Biotechnol. Biofuels 2011, 4, 34.
  • Ras, M.; Lardon, L.; Bruno, S.; Bernet, N.; Steyer, J. P. Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 2011, 102, 200–206.
  • Ciudad, G.; Rubilar, O.; Azócar, L.; Toro, C.; Cea, M.; Torres, Á.; Ribera, A.; Navia, R. Performance of an enzymatic extract in Botrycoccus braunii cell wall disruption. J. Biosci. Bioeng. 2014, 117, 75–80.
  • Fernández-Rodríguez, M. J.; Rincón, B.; Fermoso, F. G.; Jiménez, A.M.; Borja, R. Assessment of two-phase olive mill solid waste and microalgae co-digestion to improve methane production and process kinetics. Bioresour. Technol. 2014, 157, 263–269.
  • Buxy, S.; Diltz, R.; Pullammanappallil, P. Biogasification of Marine Algae Nannochloropsis Oculata. In Materials Challenges in Alternative and Renewable Energy II: Ceramic Transactions; Wicks, G., Simon, J., Zidan, R., Brigmon, R., Fischman, G., Arepalli, S., Norris, A., McCluer, M.,Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012.
  • Samson, R.; LeDuy, A. Detailed study of anaerobic digestion of Spirulina Maxima algal biomass. Biotechnol. Bioeng. 1986, 28, 1014–1023.
  • Varel, V. H.; Chen, T. H.; Hashimoto, A. G. Thermophilic and mesophilic methane production from anaerobic degradation of the cyanobacterium Spirulina maxima. Resour. Conserv. Recycl. 1988, 1, 19–26.
  • Inglesby, A. E.; Fisher, A. C. Enhanced methane yields from anaerobic digestion of Arthrospira maxima biomass in an advanced flow-through reactor with an integrated recirculation loop microbial fuel cell. Energy Environ. Sci. 2012, 5, 7996–8006.
  • Stephenson, P. G.; Moore, C. M.; Terry, M. J.; Zubkov, M. V.; Bibby, T. S. Improving photosynthesis for algal biofuels: Toward a green revolution. Trends Biotechnol. 2011, 29, 615–623.
  • Rinzema, A.; Van Lier, J.; Lettinga, G. Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enzyme Microb. Technol. 1988, 10, 24–32.
  • Schouten, S.; Villareal, T. A.; Hopmans, E. C.; Mets, A.; Swanson, K. M.; Sinninghe Damsté, J. S. Endosymbiotic heterocystous cyanobacteria synthesize different heterocyst glycolipids than free-living heterocystous cyanobacteria. Phytochemistry 2013, 85, 115–121.
  • Glazer, A. N. Light guides. Directional energy transfer in a photosynthetic antenna. J. Biol. Chem. 1989, 264, 1–4.
  • Rincón, B.; Bujalance, L.; Fermoso, F. G.; Martín, A.; Borja, R. Biochemical methane potential of two-phase olive mill solid waste: Influence of thermal pretreatment on the process kinetics. Bioresour. Technol. 2013, 140, 249–255.
  • Mendez, L.; Mahdy, A.; Timmers, R. A.; Ballesteros, M.; González-Fernández, C. Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour. Technol. 2013, 149, 136–141.
  • Mottet, A.; Habouzit, F.; Steyer, J. P. Anaerobic digestion of marine microalgae in different salinity levels. Bioresour. Technol. 2014, 158, 300–306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.