Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 14
630
Views
10
CrossRef citations to date
0
Altmetric
ARTICLES

A brief review on recent developments of electrochemical sensors in environmental application for PGMs

, , &
Pages 1233-1247 | Received 18 Apr 2016, Published online: 15 Aug 2016

References

  • Ravindra, K.; Bencs, L.; Grieken, R. Platinum group elements in the environment and their health risk. Sci. Total Environ. 2004, 318, 1–43.
  • Somerset, V.; Van derHorst, C.; Silwana, B.; Walters, C.; Iwuoha, E. Biomonitoring and evaluation of metal concentrations in sediment and crab samples from the North-West Province of South Africa. Water Air Soil Pollut. 2015, 226(3), 2329–2329.
  • Doumett, S.; Lamperi, L.; Checchini, L.; Azzarello, E.; Mugnai, S.; Mancuso, S.; Petruzzelli, G.; Del Bubba, M. Heavy metal distribution between contaminated soil and Paulowniatomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere 2008, 72(10), 1481–1490.
  • Nouri, J.; Mahvi, A.H.; Babaei, A.; Ahmadpour, E. Regional pattern distribution of groundwater fluoride inthe Shush aquifer of Khuzestan County Iran. Fluoride 2006, 39(4), 321–325.
  • D'amore, J.J.; Al-abed, S.R.; Scheckel, K.G.; Ryan, J.A. Methods of speciation of metals in soils. J Environ Qual. 2005, 34(5), 1707–1745.
  • Kamala, C.T.; Balaram, V.; Satyanarayanan, M.; Kiran Kumar, A.; Subramanyam, K.S. Biomonitoring of airborne platinum group elements in urban traffic police officers. Arch Environ. Contam. Toxicol. 2015, 68(4), 421–431.
  • Kamala, C.T.; Balaram, V.; Satyanarayanan, M.; Subramanyam, K.S.V. Source identification studies of PGE and other heavy metals released into the urban environment and development of methods for their analysis. J. Appl. Geochem. 2012, 14, 16–25.
  • Sobrova, P.; Zehnalek, J.; Adam, V.; Beklova, M.; Kizek, R. The effects on soil/water/plant/animal systems by platinum group elements. Cent Eur J Chem. 2012, 10(5), 1369–1382.
  • Essumang, D.K.; Adokoh, C.K. Deposition of platinum group metals in sediment and water bodies along the coastal belt of Ghana. Maejo Int. J Sci. Technol. 2011, 5(3), 331–349.
  • Ramavathi, M.; Balaram, V.; Satyanarayanan, M.; Sawant, S.S.; Ramesh, S.L. Anthropogenic platinum, palladium and rhodium concentrations in road dusts from Hyderabad city, India. Environ Earth Sci. 2011, 62, 1085–1099.
  • Balaram, V. Recent advances in the determination of PGE in exploration studies—a review. J. Geol. Soc. India 2008, 72(5), 661–677.
  • Conti, M.E.; Alimonti, A.; Bocca, B. Environmental exposure to platinum group elements released by automotive catalytic converters: the risk for children. Int J Environ Health. 2008, 2(3–4), 439–462.
  • Bocca, B.; Petrucci, F.; Alimonoti, A.; Caroli, A. Traffic related platinum and rhodium concentrations in the atmosphere of Rome. J. Environ. Monit. 2003, 5(4), 563–568.
  • Gomez, B.; Palacios, M.; Gomez, M.M.; Sanchez, J.; Morrison, G.; Rauch, S. Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and surface road dust of some European cities. Sci. Total Environ. 2002, 299(1–3), 1–19.
  • Gomez, B.; Gomez, M.; Sanchez, J.L.; Fernandez, R.; Palacios, M.A. Platinum and rhodium distribution in airborne particulate matter and road dust. Sci. Total Environ. 2001, 269(1–3), 131–144.
  • Colombo, C.; Monhemius, A.J.; Plant, J.A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotox. Environ. Safe. 2008, 71(3), 722–730.
  • Moldovan, M. Origin and fate of platinum group elements in the environment. Anal. Bio. Anal. Chem. 2007, 388, 537–540.
  • Gagnon, Z.; Newkirk, C.; Hicks, S. Impacts of platinum group metals on the environment: a toxicological, genotoxic and analytical chemistry study. J. Environ. Sci. Health A 2006, 41(3), 397–414.
  • World Health Organization Environmental Health Criteria 226, Palladium. International Programme on Chemical Safety: Geneva, 1991.
  • World Health Organization Environmental Health Criteria 226, Palladium. International Programme on Chemical Safety: Geneva, 2002.
  • Merget, R.; Rosner, G. Evaluation of the health risk of platinum group metals emitted from automotive catalytic converters. Sci. Total Environ. 2001, 270, 163–165.
  • Goyer, R.A.; Clarkson, T.W. Toxic effects of metals. In Casarett and Doull's toxicology, Klassen, C., ed.; McGraw Hill: New York, 1996; 852.
  • Nyriagu, O.J. A silent epidemic of environmental metal poisoning. Environ. Pollut. 1998, 50, 139–161.
  • Rauch, S.; Hemond, H.F.; Peucker-Ehrenbrink, B.; Barbante, C.; Owari, M.; Wass, U. Palladium emissions in the environment. In Analytical Methods Environmental Assessment and Health Effects, Zereini, F., Alt, F., eds.; Springer: Berlin, 2006; 295–305.
  • Paul, B.; Tiwari, A. A brief review on the application of gold nanoparticles as sensors in multi dimensional aspects. J Environ Sci. Toxicol. Food Technol. 2015, 1(4), 01–07.
  • Stohs, J.S.; Bagchi, D.; Hassoun, E.; Bagchi, M. Oxidative mechanisms in the toxicity of chromium and cadmium ions. J. Environ. Pathol. Toxicol. Oncol. 2000, 19, 201–213.
  • Wu, Z.Q.; Gu, S.Y.; Li, H.Y. Phytoremediation of heavy metal s-contaminated soils and hyper-accumulator's research advance (in Chinese). Environ. L. Sci. Mgt. 2007, 32(3), 67–71.
  • Wang, J. Real-time electrochemical monitoring: toward green analytical chemistry. Acc. Chem. Res. 2002, 35, 811–816.
  • Anastas, P.T. Green chemistry and the role of analytical methodology development. Crit. Rev. Anal. Chem. 1999, 29, 167–175.
  • Workman, J.; Creasy, K.E.; Doherty, S.; Bond, L.; Koch, M.; Ullman, A.; Veltkamp, D.J. Process analytical chemistry. Anal. Chem. 2001, 73, 2705–2718.
  • Hayat, A.; Marty, J.L. Disposable screen printed electrochemical sensors: tools for environmental monitoring. Sensors 2014, 14(6), 10432–10453.
  • Ghorbani-Bidkorbeh, F. Electrochemical sensors and biosensors represent very promising tools in pharmaceutical sciences. Iran J. Pharm. Res. 2015, 14(3), 663–664.
  • Sadik, O.A.; Land, W.H.; Wang, J. Targeting chemical and biological warfare agents at the molecular level. Electroanalysis 2003, 15(14), 1149–1159.
  • Auffan, M.; Rose, J.; Bottero, J.-Y.; Lowry, G.V.; Jolivet, J.-P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4(10), 634–641.
  • Cheon, J.; Lee, J.-H. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc. Chem. Res. 2008, 41(12), 1630–1640.
  • Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41(12), 1578–1586.
  • Gao, J.; Gu, H.; Xu, B. Multifunctionalmagnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42(8), 1097–1107.
  • Peng, C.; Li, Z.; Zhu, Y. Simultaneous and sensitive determination of multiplex chemical residues based on multicolor quantum dot probes. Biosens Bioelectron. 2009, 24(12), 3657–3662.
  • Zeng, H.; Li, J.; Wang, Z.L.; Liu, J.P.; Sun, S. Bimagnetic core/shell FePt/Fe3O4 nanoparticles. Nano Lett. 2004, 4, 187–190.
  • Hirakawa, T.; Kamat, P.V. Charge separation and catalytic activity of Ag@TiO2 core−shell composite clusters under UV−Irradiation. J. Am. Chem. Soc. 2005, 127, 3928–3934.
  • Lu, W.; Wang, B.; Zeng, J.; Wang, X.; Zhang, S.; Hou, J.G. Synthesis of core/shell nanoparticles of Au/CdSe via Au−Cd bialloy precursor. Langmuir 2005, 21, 3684–3687.
  • Lyon, J.L.; Fleming, D.A.; Stone, M.B.; Schiffer, P.; Williams, M.E. Synthesis of Fe oxide core/au shell nanoparticles by Iterative hydroxylamine seeding. Nano Lett. 2004, 4, 719–723.
  • Park, J.I.; Cheon, J. Synthesis of “solid solution” and “core-shell” type cobalt−platinum magnetic nanoparticles via transmetalation reactions. J. Am. Chem. Soc. 2001, 123, 5743–5746.
  • Teranishi, T.; Inoue, Y.; Nakaya, M.; Oumi, Y.; Sano, T. Nanoacorns:  anisotropically phase-segregated CoPd sulfide nanoparticles. J. Am. Chem. Soc. 2004, 126, 9914–9915.
  • Levin, C.S.; Hofmann, C.; Ali, T.A.; Kelly, A.T.; Morosan, E.; Nordlander, P.; Whitmire, K.H.; Halas, N.J. Magnetic−plasmonic core−shell nanoparticles. ACS Nano 2009, 3, 1379–1388.
  • Xu, Z.C.; Hou, Y.L.; Sun, S.H. Magnetic core/shell Fe3O4/au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 2007, 129, 8698–8699.
  • Yu, H.; Chen, M.; Rice, P.M.; Wang, S.X.; White, R.L.; Sun, S.H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379–382.
  • Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T.Y.; Ding, Y.; Wang, Z.L.; Swihart, M.T.; Prasad, P.N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 2006, 6(4), 875–881.
  • Kudera, S.; Carbone, L.; Casula, M.F.; Cingolani, R.; Falqui, A.; Snoeck, E.; Parak, W.J.; Manna, L. Selective growth of PbSe on one or both tips of colloidal semiconductor nanorods. Nano Lett. 2005, 5, 445–449.
  • Kwon, K.W.; Shim, M. Gamma-Fe2O3/Ii-Vi sulfide nanocrystal heterojunctions. J. Am. Chem. Soc. 2005, 127, 10269–10275.
  • Gu, H.; Yang, Z.; Gao, J.; Chang, C.K.; Xu, B. Heterodimers of nanoparticles: formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 2005, 127, 34–35.
  • Choi, J.S.; Jun, Y.W.; Yeon, S.I.; Kim, H.C.; Shin, J.S.; Cheon, J. Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc. 2006, 128, 15982–15983.
  • Gu, H.W.; Zheng, R.K.; Zhang, X.X.; Xu, B. Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles. J. Am. Chem. Soc. 2004, 126, 5664–5665.
  • Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 2004, 304, 1787–1790.
  • Wang, C.G.; Irudayaraj, J. Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 2010, 6, 283–289.
  • Barefoot, R. Distribution and speciation of platinum group elements in environmental matrices. Trends Anal. Chem. 1999, 18(11), 702–707.
  • Ravindra, K.; Bencs, L.; Van Grieken, R. Platinum group elements in the environment and their health risk. Sci. Total Environ. 2004, 318, 1–43.
  • Rao, C.R.M.; Reddi, G.S. Platinum group metals (PGM); occurrence, use and recent trends in their determination. Trends Anal. Chem. 2000, 19, 565–586.
  • Pyrzyńska, K. Monitoring of platinum in the environment. J. Environ. Monit. 2000, 2, 99N–103N.
  • Kalavrouziotis, I.K.; Koukoulakis, P.H. Environmental impact of platinum group elements (Pt, Pd and Rh) emitted by the automobile catalyst converters. Water Air Soil Pollut. 2009, 196(1–4), 393–402.
  • Hartley, F.R. Chemistry of Platinum Group Metals, Recent Development; Elsevier publishers: Amsterdam, 1991.
  • Johnson, M. Precious Metal Division; Johnson Matthey Publishing Company: London, UK, 2001.
  • Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, 1989; 1242–1363.
  • Wedepohl, K.H. The composition of the continental crust. Geochim Et Cosmochim Acta. 1995, 59, 1217–1232.
  • Moldovan, M.; Gomez, M.M.; Palacios, M. Determination of platinum, rhodium and palladium in car exhaust fumes. J. Anal. At. Spectrom. 1999, 14, 1163–1169.
  • Palacios, M.A.; Gomez, M.M.; Maldovan, M.; Morrisson, G.; Rauch, S.; McLead, C. Platinum group elements: quantification in collected exhaust fumes and studies of catalyst surfaces. Sci. Total Environ. 2000, 257, 1–15.
  • International Atomic Energy Agency, Nuclear analytical methods for platinum group elements, Vienna, Austria, 2005.
  • Klaassen, C. Casarett and Doulls Toxicology. The Basic Science of Poisons, 5th edition; McGraw-Hill: NewYork, 1996; 725–726.
  • Lu, M. Platinum Group Metals (PGMs) in airborne particles. Master's Thesis, Chalmers University of Technology: Gotenberg, Sweden, 2000.
  • Cubelic, M.; Pecoroni, R.; Schäfer, J.; Eckhardt, J.D.; Berner, Z.; Stüben, D. Verteilung verhkersbedingter Edelemetallimmissionen in Böden. UWSF – Z Umweltchem Ökotox 1997, 9, 249–258.
  • Laschka, D.; Striebel, T.; Daub, J.; Nachtwey, M. Platinum in rain water discharges from roads. Umweltwiss Schdst Forsch 1996, 8, 124–129.
  • Laschka, D.; Nachtwey, M. Untersuchungen zum Eintrag von Platin aus Kfz- Katalysatoren in die Umwelt. Report Bayerisches Landesamt für Wasserwirtschaft, Institute für Wasserforschung: Munich, 1993.
  • Rauch, S.; Morrison, G.M. Platinum uptake by the freshwater isopod Asellus aquaticus in urban rivers. Sci. Total Environ. 1999, 235, 261–268.
  • Helmers, E.; Schwarzer, M.; Schuster, M. Comparison of palladium and platinum in environmental matrices: palladium pollution by automobile emissions. Environ. Sci. Pollut. R. 1998, 5(1), 44–50.
  • Begerow, J.; Turfled, M.; Dunemann, L. Determination of physiological palladium, platinum, iridium and gold levels in human blood using double focusing magnetic sector field inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1997, 12, 1095–1098.
  • Krachler, M.; Alimonti, A.; Petrucci, F.; Irgolic, K.J.; Forastiere, F.; Caroli, S. Analytical problems in the determination of platinum group metals in urine by quadrupole and magnetic sector field inductively coupled plasma mass spectrometry. Anal. Chim.Acta 1998, 363(1), 1–10.
  • Jamali, M.R.; Assadi, Y.; Kozani, R.R. Determination of trace amounts of palladium in water samples by graphite furnace atomic absorption spectrometry after dispersive liquid–liquid microextraction. Hindawi Publishing Corporation J. Chem. 2013, 2013, 1–6, ID 671743.
  • Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin, Germany, 2007.
  • Marczenko, Z.; Balcerzak, M. Separation, Preconcentration and Pectrophotometry in Inorganic Analysis; El-Sevier: Amsterdam, 2000.
  • Matinise, N.; Ajayi, F.R.; Ikpo, C.O.; Njomo, N.; Ross, N.; Baker, P.; Iwuoha, E.I. Investigation of the electrocatalytic properties of spherical palladium nanoparticles and palladium(100)iridium bimetallic nanocomposites towards ammonia electrooxidation on Pt Electrodes. Int. J. Electrochem. Sci. 2015, 10, 8531–8548.
  • Asimellis, G.; Michos, N.; Fasaki, I.; Kompitsas, M. Platinum group metals bulk analysis in automobile catalyst recycling material by LIBS. Spectrochim. Acta B: Atomic Spectroscopy 63(11), 1338–1343.
  • Van der Horst, C.; Silwana, B.; Iwuoha, E.; Somerset, V. Stripping voltammetric determination of palladium, platinum and rhodium in freshwater and sediment samples from South African water resources. J.Environ. Sci. Health A 2012, 47(13), 2084–2093.
  • Locatelli, C. Simultaneous square wave stripping voltammetric determination of platinum group metals (PGMs) and lead at trace and ultratrace concentration level. Application to surface water. Anal. Chim. Acta. 2006, 557(1–2), 70–77.
  • Saikia, K.; Deb, B.; Borah, B.J.; Sarmah, P.P.; Dutta, D K. Palladium complexes of P,P and P,S type bidentate ligands: implication in Suzuki–Miyaura cross-coupling reaction. J. Org. Chem. 2012, 696(26), 4293–4297.
  • Chwastowska, J.; Skwara, W.; Sterlińska, E.; Pszonicki, L. Determination of platinum and palladium in environmental samples by graphite furnace atomic absorption spectrometry after separation on dithizone sorbent. Talanta 2004, 64(1), 224–229.
  • Silwana, B.; van derHorst, C.; Iwuoha, E.; Somerset, V. Reduced graphene oxide impregnated antimony nanoparticle sensor for electroanalysis of platinum group metals. Electroanalysis 2016, 28, 1597–1607.
  • Van der Horst, C.; Silwana, B.; Iwuoha, E.; Somerset, V. Bismuth–silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples. J. Electroanal. Chem. 2015, 752, 1–11.
  • Silwana, B.; van der Horst, C.; Iwuoha, E.; Somerset, V. Screen-printed carbon electrodes modified with a bismuth film for stripping voltammetric analysis of platinum group metals in environmental samples. Electrochim. Acta 2014, 128, 119–127.
  • Melucci, D.; Lacatelli, C. Platinum(II), Palladium(II), Rhodium(III) and lead(II) voltammetric determination in sites differently influenced by vehicle traffic. Anal. Di Chemica 2007, 97, 37–384.
  • Somerset, V.; Leaner, J.; Mason, R.; Iwuoha, E.; Morrin, A. Development and application of a poly (2, 2′-dithiodianiline)(PDTDA)-coated screen-printed carbon electrode in inorganic mercury determination. Electrochim. Acta. 2010, 55(14), 4240–4246.
  • Shokou, N.; Shemirani, F.; Shokou, M. Laser induced-thermal lens spectrometry after cloud point extraction for the determination of trace amounts of palladium. Spectrochim. Acta A. 2009, 74(3), 761–766.
  • Niazi, A.; Jafarian, B.; Ghasemi, K. Kinetic spectrophotometric determination of trace amounts of palladium by whole kinetic curve and a fixed time method using resazurine sulfide reaction. Spectrochim. Acta A 2008, 71(3), 841–846.
  • Georgieva, M.; Pihlar, B. Study of the reduction of palladium (II) on a mercury electrode in the presence of dimethylglyoxime. Electroanalysis 1996, 8(12), 1155–1159.
  • Ba-Shami, R.M.; Gazzaz, H.; Bashammakh, A.S.; Al-Sibaai, A.A.; El-Shahawi, M.S. Redox behavior and adsorptive cathodic stripping voltammetric determination of nanomolar levels of palladium using a novel Schiff base reagent containing a squaric acid moiety. Anal. Methods. 2014, 6(17), 6997–7005.
  • Bobrowski, A.; Gawlicki, M.; Kapturski, P.; Mirceski, V.; Spasovski, F.; Zarebski, J. The Silver amalgam film electrode in adsorptive stripping voltammetric determination of palladium(II) as Its dimethyldioxime complex. Electroanalysis 2009, 21(1), 36–40.
  • Dalvi, A.A.; Satpati, A.K.; Palrecha, M.M. Simultaneous determination of Pt and Rh by catalytic adsorptive stripping voltammetry, using hexamethylene tetramine (HMTA) as complexing agent. Talanta 2008, 75(5), 1382–1387.
  • Su; C-Y.; Kang, B-S.; Wen, T-B.; Tong, Y-X.; Yang, X-P.; Zhang, C.; Liu, H-Q. Chemistry of tripodal ligands. Part III. Copper complexes of tris(benzimidazol-2- ylmethyl)amine and of its q N-n-propyl derivative. J. Sun. Polyhedron 1999, 18, 1577–1585.
  • Silverberg, N.B.; Lim, L.K.; Paller, A.S.; Mancini, A.J. Squaric acid immunotherapy for warts in children. Dermatol. 2000, 42, 803–808.
  • Kim, S.; Cha, K.W. Determination of palladium(II) with alpha-(2-benzimidazolyl)- alpha',alpha''-(N-5-nitro-2-pyridylhydrazone)-toluene by adsorptive cathodic stripping voltammetry. Talanta 2002, 57(4), 675–679.
  • Aher, V.T.; Palrecha, M.M.; Kulkarni, A.V.; Shah1, G.C. Determination of palladium in synthetic nuclear wastes by differential pulse voltammetry. J. Radioanal. Nucl. Ch. 2002, 252(3), 573–576.
  • Locatelli, C.; Melucci, D.; Torsi, G. Determination of platinum-group metals and lead in vegetable environmental bio-monitors by voltammetric and spectroscopic techniques: critical comparison. Anal. Bioanal. Chem. 2005, 382(7), 1567–1573.
  • Locatelli, C. Platinum, rhodium, palladium and lead: elements linked to vehicle emissions. their simultaneous voltammetric determination in superficial water. Electroanalysis 2005, 17(2), 140–147.
  • Locatelli, C. Simultaneous square wave stripping voltammetric determination of platinum group metals (PGMs) and lead at trace and ultratrace concentration level Application to surface water. Anal. Chim. Acta 2006, 557, 70.
  • Locatelli, C. Possible interference in the sequential voltammetric determination at trace and ultratrace concentration level of platinum group metals (PGMs) and lead. Application to environmental matrices. Electrochim. Acta. 2006, 52(2), 614–622.
  • Bard, A.J.; Faulkner, L. Electrochemical Methods: fundamentals and Applications; John Wiley & Sons: New York, 1980; 218.
  • Zhao, Z.; Gao, J. Single sweep polarography of palladium-dimethylglyoxime complex. J. Electroanal. Chem. 1988, 256(1), 65–75.
  • Stetzenbach, K.J.; Amano, M.; Kreamer, D.K.; Hodge, V.F. Trace-element geochemistry in water at the part-per-trillion level. Ground water 1994, 32(6), 976–985.
  • Raber, G.; Kalcher, K.; Neuhold, C.; Talaber, C. Adsorptive stripping voltammetry of palladium(II) with thioridazine in situ modified carbon paste electrode. Electroanalysis 1995, 7(2), 138–142.
  • Georgieva, M.; Pihlar, B. Determination of palladium by adsorptive stripping voltammetry. J. Fresenius Anal. Chem. 1997, 357, 874–880.
  • Messerschmidt, A.; Huber, R.; Wieghardt, K.; Poulos, T. Handbook of Metallo proteins; Wiley, 2001.
  • Wang, J.; Varughese, K. Determination of traces of palladium by adsorptive stripping voltammetry of the dimethyl-glyoxime complex. Anal. Chim. Acta. 1987, 199, 185–189.
  • Habashi, F. Handbook of extractive metallurgy-volume III; Wiley: Germany, 1997, 1269–1326.
  • Merget, R. Occupational platinum salt allergy. Diagnosis, prognosis, prevention and therapy. In Arthropogenic Platinum-Group Element Emissions: Their Impact on Man and Environment, Zereini, F., Alt, F., editors. Springer Verlag: Berlin, 2000, 257–265.
  • Paraskevas, M.; Tsopelas, F.; Ochsenkühn-Petropoulou, M. Determination of Pt and Pd in particles emitted from automobile exhaust catalysts using ion-exchange matrix separation and voltammetric detection. Microchim. Acta. 2012, 176, 235–242.
  • Huszał, S.; Kowalska, J.; Krzemińska, M.; Golimowski, J. Determination of platinum with thiosemicarbazide by catalytic adsorptive stripping voltammetry. Electroanalysis 2005, 17(4), 299–304.
  • Dubiella-Jackowska, A.; Polkowska, Z.; Namiesnik, J. Platinum group elements: a challenge for environmental analytics. Pol. J Environ Stud. 2007, 16(3), 329–345.
  • Alt, F.; Bambauer, A.; Hoppstock, K.; Mergler, B.; Tolg, G. Platinum traces in airborne particulate matter. Determination of whole conten, particle size distribution and soluble platinum. Fresenius J Anal. Chem. 1993, 346, 693–696.
  • Fergusson, J.E. The Heavy Elements: Chemistry, Environmental Impact and Health Effects; Parganon Press: UK 1990.
  • Zimmermann, S.; Messerschmidt, J.; Von, B.A.; Taraschewski, H.; Sures, B. Biological availability of traffic related platinum group elements (palladium, platinum and rhodium) to the zebra mussel in water containing road dust. Environ. Toxicol. Chem. 2002, 21, 2713–2718.
  • Gebel, T.; Lantzsch, H.; Plebow, K.; Dunkelberg, K. Genotoxicity of platinum and palladium compounds in human and bacterial cells. Mut. Resour 1997, 389(2–3), 183–190.
  • Hughes, E.G. Medical surveillance of platinum refinery workers. J. Soc. Occup. Med. 1980, 30(1), 27–30.
  • Bunger, J.; Stork, J.; Stalder, K. Cyto- and genotoxic effects of co-ordination complexes of platinum, palladium and rhodium in vitro. Int. Arch. Occup. Environ. Health. 1996, 69(1), 33–38.
  • Schmid, M.; Zimmerman, S.; Krug, F.; Sures, B. Influence of platinum, palladium and rhodium as compared with cadmium, nickel and chromium on cell viability and oxidative stress in human bronchial epithelial cell. Environ. Int. 2007, 33, 385–390.
  • Schuster, M.; Schwarzer, M.; Risse, G. Determination of palladium in environmental samples. In Anthropogenic Platinum Group Element Emissions. Their Impact on Man and Environment, Zereini, F., Alt, F., eds.; Springer – Verlag: Berlin, 2000; 173–182.
  • Hees, T.; Wenclawiak, B.; Lustig, S.; Schramel, P.; Schwarzer, M. Distribution of platinum group elements (Pt, Pd and Rh) in environmental and clinical matrices: composition, analytical techniques and scientific outlook – status report. Environ. Sci. Pollut. R. 1998, 5, 105–111.
  • Gothberg, A.; Greger, M.; Holm, K.; Bengtsson, B. Influence of nutrients on uptake and effects of Hg, Cd and Pb in Ipo-moeaaquatica. J. Environ. Qual. 2004, 33(4), 1247–1255.
  • Sharma, R.K.; Agrawal, M.; Marshall, F.M. Effects of waste water irrigation on heavy metal accumulation in soil and plants. Paper presented at a National Seminar. Bangalore University: India, 2004; Abstract 7, 8p.
  • Whitely, J.D.; Murray, F. Anthropogenic platinum group elements (Pt, Rh, Pd) concentrations in road dust and road side soils from Perth Western Australia. Sci. Total Environ 2003, 317, 121–135.
  • Hoppstock, K.; Sures, B. Platinum group metals. In Elements and Their Compounds in Their Environment, Merian, E., Anke, M., and Stoeppler, M., eds.; Wiley, 2004, 1047–1086.
  • Schafer, J.; Punchelt, H. Platinum-group metal (PGM) emitted from automobile catalytic converters and their distribution in roadside soils. Geochem. Explor. 1998, 64, 307–314.
  • Tankari, D.B.A.; Ducoulombier, C.C.; Soligot, C.; Feidt, C.; Rychen, G. Deposition of platinum group elements and polycyclic aromatic hydrocarbons on rye grass exposed to vehicular traffic. Agron. Sustain. Dev. 2007, 27, 261–266.
  • Egbenda, P.O.; Thullah, F.; Kamara, I. A physico-chemical analysis of soil and selected fruits in one rehabilitated mined out sites in the Sierra Rutile environs for the presence of heavy metals, Lead, Copper, Zinc, Chromium and Arsenic. Afr. J. Pure Appl. Chem. 2015, 9(2), 27–32.
  • Peralta-Videaa, J.R.; Lopeza, M.L.; Narayana, M.; Saupea, G.; Gardea-Torresdeya, J. The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int. J.Biochem. Cell B. 2009, 41, 1665–1677.
  • Vanbroekhoven, K.; Van Roy, S.; Gielen, C.; Maesen, M.; Diels, L.; Seuntjens, P. Varying redox conditions changes metal behavior due to microbial activities. Geophys. Res. 2006, 8, 02292.
  • Brummer, G.W.; Gerth, J.; Herms, U. Heavy metal species, mobility and availability in soils. Z. Pflanzenernahr. Bodenk. 1986, 149, 382–398.
  • Gerringa, L.J.A.; de Baar, H.J.W.; Nolting, R.F.; Paucot, H. The influence of salinity on the solubility of Zn and Cd sulphides in the Scheldt estuary. J. Sea Res. 2001, 46(3), 201–211.
  • Baumann, T.; Muller, S.; Niessner, R. Migration of dissolved heavy metal compounds and PCP in the presence of colloids through heterogeneous calcareous gravel and a homogeneous quartz and - pilot scale experiments. Water Res. 2002, 36(5), 1213–1223.
  • Chuan, M.C.; Shu, G.Y.; Liu, J.C. Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut. 1996, 90(3–4), 543–556.
  • Chapman, P.M.; Allen, H.E.; Z'Graggen, M.N. Evaluation of bioaccumulation factors in regulating metals. Environ. Sci. Technol. 1996, 30(10), 448A–452A.
  • Ruus, A.; Schaanning, M.; Oxnevad, S.; Hylland, K. Experimental results on bioaccumulation of metals and organic contaminants from marine sediments. Aquat. Toxicol. 2005, 72, 273–292.
  • Newman, M.C. Fundamentals of Ecotoxicology. 3rd edition. CRC Press: Boca Raton, FL, 2010.
  • Hung, D.Q.; Nekrassova, O.; Compton, R.G. Analytical methods for inorganic arsenic in water: a review. Talanta 2004, 64, 269–277.
  • Tang, S.; Zhang, H.; Lee, H.K. Advances in sample extraction. Anal. Chem. 2016, 88, 228–249.
  • Dubiella-Jackowska, A.; Polkowska, Z.; Namiesnik, J. Platinum group elements: a challenge for environmental analytics. Pol. J Environ Stud. 2007, 16(3), 329–345.
  • Zimmerman, A.J.; Weindorf, D.C. Heavy metal and trace metal analysis in soil by sequential extraction: a review of procedure. Int. J. Anal Chem 2010, 2010, 1–7, Article ID 387803.
  • Taylor, H.E. Inductively Coupled Plasma-Mass Spectrometry, Practices and Techniques; Academic Press: San Diego, 2001.
  • Lira, M.; Santos, L.; Azeredo, J.; Yebra-Pimentel, E.; Oliveira, M.E. Comparative study of silicone-hydrogel contact lenses surfaces before and after wear using atomic force microscopy. J. Biomed. Mater. Res. B. 2008, 85(2), 361–367.
  • Uslu, B.; Ozkan, S.A. Solid electrodes in electroanalytical chemistry: present applications and prospects for high throughput screening of drug compounds. Comb. Chem. High T. Scr. J. 2007, 10, 495–513.
  • Brainina, K.; Neyman, E. Electroanalytical Stripping Methods; John Wiley & Sons: New York, 1993.
  • Krishnaiah, V.; Thirupal Reddy, M.; Hanuman Reddy, V.; Sudharsan Reddy, D.; Rami Reddy, Y.V. Voltammetric methods for the determination and electrode process of nitazoxanide bulk drug industry. J. Chem. Pharm. Res. 2012, 4(7), 3601–3605.
  • Dube, A.; Zbytniewski, R.; Kowalkowski, T.; Cukrowska, E.; Buszewski, B. Adsorption and migration of heavy metals in soil. Pol. J. Environ. Stud 2001, 10(1), 1–10.
  • Rahman, A.; Kumar, P.; Park, D-S.; Shim, Y-B. Electrochemical sensors based on organic conjugated polymers. Sensors 2008, 8(1), 118–141.
  • Koedrith, P.; Thasiphu, T.; Weon, J.; Boonprasert, R.; Tuitemwong, K.; Tuitemwong, P. Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. Sci. World J. 2015, 510982.
  • Thakur, M.S.; Ragavan, K.V. Biosensors in food processing. J. Food Sci. Technol. 2013, 50(4), 625–641.
  • Somerset, V.; Petrik, L.; Iwuoha, E. Alkaline hydrothermal conversion of fly ash precipitates into zeolites 3: the removal of mercury and lead ions from wastewater. J. Environ. Manage 2007, 87(2008), 125–131.
  • Brendel, P.J.; Luther, G.W. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and fresh-water sediments. Environ. Sci. Technol. 1995, 29(3), 751–761.
  • Barek, J. Possibilities and limitations of mercury and mercury-based electrodes in practical electroanalysis of biologically active organic compounds. Portugaliae Electrochim. Acta. 2013, 31(6), 291–295.
  • Luther, G.W.; Brendel, P.J.; Lewis, B.L.; Sundby, B.; Lefrancois, L.; Silverberg, N.; Nuzzio, D.B. Simultaneous measurement of O2 Mn, Fe, I− and S(-II)) in marine pore waters with a solid-state voltammetric microelectrode. Limnol. Oceanogr. 1998, 43(2), 325–333.
  • Belmont-Hebert, C.; Tercier, M.L.; Buffle, J.; Fiaccabrino, G.C.; de Rooij, N.F.; Koudelka-Hep, M. Gel-integrated microelectrode arrays for direct voltammetric measurements of heavy metals in natural waters and other complex media. Anal. Chem. 1989, 70(14), 2949–2956.
  • Tercier, M.L.; Buffle, J.; Graziottin, F. Novel voltammetric in-situ profiling system for continuous real-time monitoring of trace elements in natural waters. Electroanalysis 1998, 10, 355–363.
  • Tercier, M.L.; Parthasarathy, N.; Buffle, J. Reproducible, reliable and rugged hgplated ir-based microelectrode for in-situ measurements in natural waters. Electroanalysis 1995, 7(1), 55–63.
  • Peckova, K.; Barek, J. Boron doped diamond microelectrodes and microelectrode arrays in organic electrochemistry. Curr. Org. Chem. 2011, 15, 3014–3028.
  • Svancara, I.; Prior, C.; Hocevar, S.B.; Wang, J. A decade of bismuth-based electrodes in electroanalysis. Electroanalysis 2010, 22, 1405–1420.
  • Somerset, V.; Silwana, B.; van der Horst, C.; Iwuoha, E. Construction and valuation of a carbon paste electrode modified with polyaniline-co-poly(dithiodianiline) for enhanced Stripping voltammetric determination of metal ions. Sensing in Electroanalysis Vol. 8 (K. Kalcher, R. Metelka, I. Švancara, K. Vytřas; Eds.), University Press Centre: Pardubice, Czech Republic, 2014; 143–154.
  • Somerset, V.S.; Hernandez, L.H.; Iwuoha, E.I. Stripping voltammetric measurement of trace metal ions using screen-printed carbon and modified carbon paste electrodes on river water from the Eerste-Kuils River System. J. Environ. Sci. Health A 2011, 46, 17–32.
  • Jia, J.; Cao, L.; Wang, Z. Nafion/Poly(sodium 4-styrenesulfonate) mixed coating modified bismuth film electrode for the determination of trace metals by anodic stripping voltammetry. Electroanalysis 2007, 19, 1845–1849.
  • Wang, B.; Zhang, J.; Cheng, G.; Dong, S. Amperometric enzyme electrode for the determination of hydrogen peroxide based on sol-gel/hydrogel composite film. Anal. Chim. Acta 2000, 407, 111–118.
  • Baldwin, R. P.; Thomsen, K. N. Chemically modified electrodes in liquid chromatography detection: a review. Talanta 1991, 38(1), 1–16.
  • Wang, J. Modified electrodes for electrochemical sensors. Electroanalysis 1991, 3, 255–259.
  • Xia, F.; Zhang, X.; Zhou, C.; Sun, D.; Dong, Y.; Liu, Z. Simultaneous determination of copper, lead, and cadmium at hexagonal mesoporous silica immobilized quercetin modified carbon paste electrode. J. Autom. Methods Manag. Chem. 2010, 2010, 1–6, ID 824197.
  • Sanghavi, B.J.; Wolfbeis, O.S.; Hirsch, T.; Swami, N.S. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 2015, 182(1), 1–41.
  • Alkire, R.C.; Kolb, D.M.; Lipkowski, J.; Ross, P.N. Chemically modified electrodes. Volume of Advances in Electrochemical Sciences and Engineering; Wiley-VCH: Weinheim, 2009; 1–56.
  • Murray, R.W.; Ewing, A.G.; Durst, R.A. Chemically modified electrodes: molecular design for electroanalysis. Anal. Chem. 1987, 59, 379A–390A.
  • Zen, J.M.; Kumar, A.S.; Tsai, D.M. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 2003, 15, 1073–1087.
  • Lei, W.; Si, W.; Xu, Y.; Gu, Z.; Hao, Q. Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim. Acta. 2014, 181(7–8), 707–722.
  • Hao, Q.; Wang, H.; Yang, X.; Lu, Y.; Wang, X. Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res. 2011, 4(4), 323–333.
  • Hocevar, S.B.; Švancara, I.; Ogorevc, B.; Vytřas, K. Antimony film electrode for electrochemical stripping analysis. Anal. Chem. 2007, 79(22), 8639–8643.
  • Honeychurch, K.C. Screen-printed electrochemical sensors and biosensors for monitoring metal pollutants. Int. Sci. J. 2012, 2(1), 1–51.
  • Wang, J. Stripping analysis at bismuth electrodes: a review. Electroanalysis 2005, 17, 1341–1346.
  • Wang, J.; Lu, J.; Hocevar, S.B.; Farias, P.A.M.; Ogorevc, B. Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal. Chem. 2000, 72, 3218–3222.
  • Kokkinos, C.; Economou, A. Stripping analysis at bismuth-based electrodes. Curr. Anal. Chem. 2008, 4(3), 183–190.
  • Baldrianova, L.; Svancara, I.; Economou, A.; Sotiropoulos, S. Anodic stripping voltammetry at in situ bismuth-plated carbon and gold microdisc electrodes in variable electrolyte content unstirred solutions. Anal. Chim. Acta. 2006, 580(1), 24–31.
  • Pauliukaite, R.; Hocevar, S.B.; Ogorevc, B.; Wang, J. Characterization and applications of a bismuth bulk electrode. Electroanalysis 2004, 16, 719–723.
  • Buckova, M.; Grundler, P.; Flechsig, G.U. Adsorptive stripping voltammetric detection of daunomycin at a bismuth bulk electrode. Electroanalysis 2005, 17(5–6), 440–444.
  • Hocevar, S.B.; Svancara, I.; Vytras, K.; Ogorevc, B. Novel electrode for electrochemical stripping analysis based on carbon paste modified with bismuth powder. Electrochim. Acta. 2005, 51(4), 706–710.
  • Wang, J.; Deo, R.P.; Thongngamdee, S.; Ogorevc, B. Effect of surface-active compounds on the stripping voltammetric response of bismuth film electrodes. Electroanalysis 2001a, 13, 1153–1156.
  • Svancara, I.; Fairouz, M.; Ismail, K.; Metelka, R.; Vytras, K. A contribution to the characterisation of mercury and bismuth film carbon paste electrodes in stripping voltammetry. Scientific Papers of the University of Pardubice, 2003.
  • Roberto, A.S. Luz.; Rodrigo, M. Iost.; Crespilho, Frank N. Nanobioelectrochemistry, Springer-Verlag: Berlin Heidelberg, 2013.
  • Yanez-Sedeno, P.; Pingarron, J.M. Gold nanoparticle-based electrochemical biosensors. Anal. Bioanal. Chem. 2005, 382(4), 884–886.
  • Rosi, N.L.; Mirkin, C.A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105(4), 1547–1562.
  • Martin, Z.; Majumdar, N.; Cabral, M.; Camacho-Alanis, F.; Gergel, N.; Swami, N.; Harriott, L.; Yao, T.; Tour, J.; Long, D.; Shashidhar, R. Fabrication and characterization of interconnected molecular devices in a nanowell crossbar architecture. IEEE Trans Nanotechnol. 2009, 8, 574–581.
  • Camacho-Alanis, F.; Wu, L.; Zangari, G.; Swami, N.S. Molecular junctions of 1 nm device length on self-assembled monolayer modified n-vs. p-GaAs. J. Mat. Chem. 2008, 18, 5459–5476.
  • Katz, E.; Willner, I.; Wang, J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 2004, 16(1–2), 19–44.
  • Welch, C.M.; Compton, R.G. The use of nanoparticles in electroanalysis: a review. Anal. Bioanal. Chem. 2004, 384, 601–619.
  • Sanghavi, B.J.; Sitaula, S.; Griep, M.H.; Karna, S.P.; Ali, M.F.; Swami, N.S. Electrochemical monitoring of adenosine triphosphate in the picomolar to micromolar range using graphene-modified electrodes. Anal. Chem. 2013, 85, 8158–8165.
  • .Sanghavi, B.J.; Hirsch, G.; Karna, S.P.; Srivastava, A.K. Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal. Chim. Acta 2012, 735, 37–45.
  • Swami, N.S.; Chou, C.F.; Terberueggen, R. Two-potential electrochemical probe for study of DNA immobilization. Langmuir 2005, 21, 1937–1941.
  • Adami, M.; Marco, S.; Nicolini, C. A potentiometric stripping analyzer for multianalyte screening. Electroanalysis 2007, 19, 1288–1294.
  • Hwang, G.H.; Han, W.K.; Park, J.S.; Kang, S.G. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 2008, 76, 301–308.
  • White, N.M.; Turner, J.D. Thick-film sensors: past, present and future. Meas. Sci. Technol. 1997, 8, 1–20.
  • Silwana, B. Graphene supported antimony nanoparticles on screen-printed carbon electrodes for stripping analysis of environmental samples. PhD's Thesis, University of the Western Cape: Bellville, South Africa, 2016.
  • Van der Horst, C. Development of a Bismuth-Silver Nanofilm Sensor for the Determination of Platinum Group Metals in Environmental Samples. PhD's Thesis, University of the Western Cape: Bellville, South Africa, 2015.
  • Guell, R.; Aragay, G.; Fontas, C.; Antico, E.; Merkoci, A. Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis. Anal. Chim. Acta 2008, 627, 219–224.
  • Skogvold, S.M.; Mikkelsen, O. Electrochemical properties and range of application of mixed gold bismuth electrodes. Electroanalysis 2008, 20, 1738–1747.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.