Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 14
263
Views
12
CrossRef citations to date
0
Altmetric
ARTICLES

Hydrocarbons biodegradation by activated sludge bacteria in the presence of natural and synthetic surfactants

, , , &
Pages 1262-1268 | Received 23 Mar 2016, Published online: 17 Aug 2016

References

  • Sunmonu, T.O.; Oloyede, O.B. Biochemical assessment of the effects of crude oil contaminated catfish (Clarias gariepinus) on the hepatocytes and performance of rat. Afr. J. Biochem. Res. 2007, 1(5), 83–89.
  • Sree, U.; Bauer, H.; Fuerhacker, M.; Ellinger, R.; Schmidt, H.; Puxbaum, H. Hydrocarbons emissions from a municipal wastewater treatment pilot plant in Vienna. Water Air Soil Pollut. 2000, 124(1–2), 177–186.
  • Mrowiec, B.; Kuglarz, M.; Przywara, L. Removal of aromatic hydrocarbons (BTX) in anoxic and anaerobic wastewater treatment processes. Desalin. Water Treat. 2013, 51, 1577–1583.
  • Lipczynska-Kochany, E.; Kochany, J. Respirometric studies on the impact of humic substances on the activated sludge treatment: Mitigation of an inhibitory effect caused by diesel oil. Environ. Technol. 2008, 29(10), 1109–1118.
  • Parales, R.E.; Ju, K.-S.; Rollefson, J.B.; Ditty, J.L. Bioavailability, chemotaxis and transport of organic pollutants. In Microbial Biodegradation: Genomics and Molecular Biology; Diaz, E., Ed.; Caister Academic Press: Madrid, 2008; 145–185.
  • Juteau, P.; Bisaillon, J.G.; Lepine, F.; Ratheau, V.; Beaudet, R.; Villemur, R. Improving the biotreatment of hydrocarbons-contaminated soils by addition of activated sludge taken from the wastewater treatment facilities of an oil refinery. Biodegradation 2003, 14, 31–40.
  • Górna, H.; Ławniczak, Ł.; Zgoła-Grześkowiak, A.; Kaczorek, E. Differences and dynamic changes in the cell surface properties of three Pseudomonas aeruginosa strains isolated from petroleum-polluted soil as a response to various carbon sources and the external addition of rhamnolipids. Bioresour. Technol. 2011, 102(3), 3028–3033.
  • Tong, K.; Zhang, Y.; Liu, G.; Ye, Z.; Chu, P.K. Treatment of heavy oil wastewater by a conventional activated sludge process coupled with an immobilized biological filter. Int. Biodeter. Biodegr. 2013, 84, 65–71.
  • Fatone, F.; Di Fabio, S.; Bolzonella, D.; Cecchi, F. Fate of aromatic hydrocarbons in Italian municipal wastewater systems: An overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs). Water Res. 2011, 45(1), 93–104.
  • Reichenberg, F.; Mayer, P. Two complimentary sides of biavailability: Accessibility and chemical activity of organic conteminants in sediments and soil. Environ. Toxicol. Chem. 2006, 25(5), 1239–1245.
  • Gilbert, D.; Jakobsen, H.; Winding, A.; Mayer, P. Co-transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under difussive conditions. Environ. Sci. Technol. 2014, 48, 4368–4375.
  • Chang, Y.-T.; Hung, C.-H.; Chou, H.-L. Effects of polyethoxylate lauryl ether (Brij 35) addition on phenanthrene biodegradation in a soil/water system. J. Environ. Sci. Heal. A 2014, 49(14), 1672–1684.
  • Brown, D.G.; Jaffé, P.R. Effects of nonionic surfactants on the UV/visible absorption of bacterial cells. Biotechnol. Bioeng. 2001, 74, 476–482.
  • Joshi, S.J.; Desai, A.J. Biosurfactant's role in bioremediation of NAPL and fermentative production. Adv. Exp. Med. Biol. 2010, 672, 222–235.
  • Bustamante, M.; Durán, N.; Diez, M.C. Biosurfactants are useful tools for the bioremediation of contaminated soil: A review. J. Soil Sci. Plant Nutr. 2012, 12(4), 667–687.
  • Kobayashi, T.; Kaminaga, H.; Navarro, R.R.; Iimura, Y. Application of aqueous saponin on the remediation of polycyclic aromatic hydrocarbons-contaminated soil. J. Environ. Sci. Heal. A. 2012, 47(8), 1138–1145.
  • Zhang, H.Z.; Long, X.W.; Sha, R.Y.; Zhang, G.L.; Meng, Q. Biotreatment of oily wastewater by rhamnolipids in aerated active sludge system. J. Zhejiang Univ. Sci. B 2009, 10(11), 852–859.
  • Kaczorek, E.; Smułek, W.; Zgoła-Grześkowiak, A; Bielicka-Daszkiwicz, K.; Olszanowski, A. Effect of Glucopon 215 on cell surface properties of Pseudomonas stutzeri and diesel oil biodegradation. Int. Biodeter. Biodegr. 2015, 104, 129–135.
  • Ma, J.; Yan, G.; Ma, W.; Cheng, C.; Wang, Q.; Guo, S. Isolation and characterization of oil-degrading microorganisms for bench-scale evaluations of autochthonous bioaugmentation for soil remediation. Water Air Soil Pollut. 2015, 226, 272.
  • Guzik, U.; Greń, I.; Wojcieszyńska, D.; Łabużek, S. Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbon degradation. Braz. J. Microbiol. 2009, 40(2), 285–291.
  • Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. J. Colloid. Interf. Sci. 2003, 261(2), 402–410.
  • Kaczorek, E.; Cieślak, K.; Bielicka-Daszkiewicz, K.; Olszanowski, A. The influence of rhamnolipids on aliphatic fractions of diesel oil biodegradation by microorganism combinations. Indian J. Microbiol. 2013, 53(1), 84–91.
  • Mao, J.; Luo, Y.; Teng, Y.; Li, Z. Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int. Biodeter. Biodegr. 2012, 70, 141–147.
  • Thomas, F.; Lorgeoux, C.; Faure, P.; Billet, D.; Cebron, A. Isolation and substrate screening of polycyclic aromatic hydrocarbon degrading bacteria from soil with long history of contamination. Int. Biodeter. Biodegr. 2016, 107, 1–9.
  • Steliga, T.; Jakubowicz, P.; Kapusta, P. Changes in toxicity during treatment of wastewater from oil plant contaminated with petroleum hydrocarbon. J. Chem. Technol. Biotechnol. 2015, 90, 1408–1418.
  • Gargouri, B.; Karray, F.; Mhiri, N.; Aloui, F.; Sayadi, S. Bioremediation of petroleum hydrocarbons-contaminated soil by bacterial consortium isolated from an industrial wastewater treatment plant. J. Chem. Technol. Biotechnol. 2014, 89, 978–987.
  • Wang, Z.; Pan, F.; Hesham, A.; Gao, Y.; Zhang, Y.; Yang, M. Impacts of produced water origin on bacterial community structures of activated sludge. J. Environ. Sci. 2015, 37, 192–199.
  • Das, N.; Chandran, P. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnol. Res. Int. 2011, doi:10.4061/2011/941810.
  • Doszhanov, Y.O.; Mansurov, Z.A.; Ongarbaev, Y.K. The study of biodegradation of diesel fuels by different strains of Pseudomonas. Appl. Mech. Mat. 2014, 467, 12–15.
  • Essien, J.P.; Ebong, G.A.; Asuquo, J.E.; Olajire, A.A. Hydrocarbons contamination and microbial degradation in mangrove sediments of the Niger Delta region (Nigeria). Chem. Ecol. 2012, 28(5), 421–434.
  • Mehdizadeh, S.N.; Mehrnia, M.R.; Abdi, K.; Sarrafzadeh, M.H. Biological treatment of toluene contaminated wastewater by Alcaligenese faecalis in an extractive membrane bioreactor; experiments and modelling. Water Sci. Technol. 2011, 64(6), 1239–1246.
  • Igwo-Ezikpe, M.N.; Gbenle, O.G.; Ilori, M.O.; Okpuzor, J.; Osuntoki, A.A. Evaluation of Alcaligenes faecalis degradation of chrysene and diesel oil with concomitant production of biosurfactant. Res. J. Environ. Toxicol. 2009, 3(4), 159–169.
  • Lal, B.; Khanna, S. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J. Appl. Bacteriol. 1996, 81(4), 355–362.
  • Nielsen, P.H.; Thomsen, T.R.; Nielsen, J.L. Bacterial composition of activated sludge—Importance for floc and sludge properties. Water Sci. Technol. 2004, 49(10), 51–58.
  • Zhong, H.; Jiang, Y.; Zeng, G.; Liu, Z.; Liu, L.; Liu, Y.; Yang, X.; Lai, M.; He, Y. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces. J. Hazard. Mater. 2015, 285, 383–388.
  • Xie, B.; Gu, J.; Lu, J. Surface properties of bacteria from activated sludge in relation to bioflocculation. J. Environ. Sci. 2010, 22(12), 1840–1845.
  • Sałek, K.; Kaczorek, E.; Guzik, U.; Zgoła-Grześkowiak, A. Bacterial properties changing under Triton X-100 presence in the diesel oil biodegradation systems: From surface and cellular changes to mono- and dioxygenases activities. Environ. Sci. Pollut. Res. 2014, 22, 4305–4315.
  • Noordman, W.H.; Wachter, J.H.J.; de Boer, G.J.; Janssen, D.B. The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J. Biotechnol. 2002, 94, 195–212.
  • Yalçin, E.; Çavuşoğlu, K.; Özen, E. Hydrocarbon degradation by a new Pseudomonas sp., strain RW-II, with polycationic surfactant to modify the cell hydrophobicity. Environ. Technol. 2011, 32(15), 1743–1747.
  • Cerqueira, V.S.; Hollenbach, E.B.; Maboni, F.; Vainstein, M.H.; Camargo, F.A.; do Carmo, R.; Peralba M.; Bento, F.M. Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresour. Technol. 2011, 102, 11003–11010.
  • Santisi, S.; Cappello, S.; Catalfamo, M.; Mancini, G.; Hassanshahian, M.; Genovese, L.; Giuliano, L.; Yakimov, M.M. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium. Braz. J. Microbiol. 2015, 46(2), 377–387.
  • Mohanty, S.; Jasmine, J.; Mukherji, S. Practical considerations and challenges involved in surfactant enhanced bioremediation of oil. BioMed Res. Int. 2013, doi: 10.1155/2013/328608.
  • Galindo, H.; Revah, S.; Cervantes, F.J.; Arriaga, S. Effect of surfactant and oil additions in the biodegradation of hexane and toluene vapours in batch tests. Environ. Technol. 2011, 32(2), 167–173.
  • Montagnolli, N.; Lopes, P.R.M.; Bidoia, E.D. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environ. Monit. Assess. 2015, 187, 4116.
  • Mohanty, S.; Mukherji, S. Surfactant aided biodegradation of NAPLs by Burkholderia multivorans: Comparison between Triton X-100 and rhamnolipid JBR-515. Colloid. Surf. B. 2013, 102, 644–652.
  • Li, Y.; Yang, L.; Zhu, T.; Yang, J.; Ruan, X. Biosurfactants as alternatives to chemosynthetic surfactants in controlling bubble behavior in the flotation process. J. Surfactant. Deterg. 2013, 16, 409–419.
  • Mnif, I.; Mnif, S.; Sahnoun, R.; Maktouf, S.; Ayedi, Y.; Ellouze-Chaabouni, S.; Ghribi, D. Biodegradation of diesel oil by a novel microbial consortium: Comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ. Sci. Pollut. Res. 2015, 22, 14852–14861.
  • Yan P.; Lu, M.; Guan, Y.; Zhang, W.; Zhang, Z. Remediation of oil-based drill cuttings through a biosurfactant-based washing followed by a biodegradation treatment. Bioresour. Technol. 2011, 102, 10252–10259.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.