Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 14
309
Views
9
CrossRef citations to date
0
Altmetric
ARTICLES

Performance evaluation of micro-aerobic hydrolysis of mixed sludge: Optimum aeration and effect on its biochemical methane potential

, , , , &
Pages 1269-1277 | Received 25 Apr 2016, Published online: 17 Aug 2016

References

  • Appels, L.B. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34(6), 755–781.
  • Fonoll, X.; Astals, S.; Dosta, J.; Mata-Alvarez, J. Anaerobic co-digestion of sewage sludge and fruit wastes: Evaluation of the transitory states when the co-substrate is changed. Chem. Eng. J. 2015, 262, 1268–1274.
  • Huiliñir, C.; Montalvo, S.; Guerrero, L. Biodegradability and methane production from secondary paper and pulp sludge: Effect of fly ash and modeling. Water Sci. Technol. 2015, 72(2), 230–237.
  • Pilli, S.; Bhunia, P.; Yan, S.; LeBlanc, R.J.; Tyagi, R.D.; Surampalli, R.Y. Ultrasonic pretreatment of sludge: A review. Ultrason. Sonochem. 2011, 18(1), 1–18.
  • Zhang, L.; Zhang, Y.; Zhang, Q.; Verpoort, F.; Cheng, W.; Cao, L.; Li, M. Sludge gas production capabilities under various operational conditions of the sludge thermal hydrolysis pretreatment process. J. Energy Inst. 2014, 87(2), 121–126.
  • Garrido-Baserba, M.; Molinos-Senante, M.; Abelleira-Pereira, J.M.; Fdez-Güelfo, L.A.; Poch, M.; Hernández-Sancho, F. Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems. J. Cleaner Prod. 2015, 107, 410–419.
  • Bolzonella, D.; Pavan, P.; Battistoni, P.; Cecchi, F. Mesophilic anaerobicigestion of waste activated sludge: Influence of the solid retention time in the wastewater treatment process. Process Biochem. 2005, 40(3–4), 1453–1460.
  • Lee, I-S.; Parameswaran, P.; Rittmann, B.E. Effects of solids retention time on methanogenesis in anaerobic digestion of thickened mixed sludge. Bioresour. Technol. 2011, 102(22), 10266–10272.
  • Pérez-Elvira, S.I.; Fernández-Polanco, M.; Fernández-Polanco, F. Enhancement of the anaerobic digestion of sludge: Comparisons of four different strategies. Water Sci. Technol. 2011, 64(2), 375–383.
  • Tiehm, A.; Nickel, K.; Zellhorn, M.; Neis, U. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res. 2001, 35(8), 2003–2009.
  • Zhu, M.; Lu, F.; Hao, L.P.; He, P.J.; Shao, L.M. Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation. Waste Manage. 2009, 29(7), 2042–2050.
  • Ruíz, J.E.; Méndez, J.M.; Alvarado, A.; Martínez, S.A. Effect of low temperature thermal pre-treatment on the solubilization of organic matter, pathogen inactivation and mesophilic anaerobic digestion of poultry sludge. J. Environ. Sci. Health A 2005, 47(12), 1795–1802.
  • Carrère, H.; Bougrier, C.; Castets, D.; Delgenès, J.P. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment. J. Environ. Sci. Health A 2008, 43(13), 1551–1555.
  • Bien, J.B.; Malina, G.; Bien, J.D.; Wolny, L. Enhancing anaerobic fermentation of sewage sludge for increasing biogas generation. J. Environ. Sci. Health A 2004, 39(4), 939–949.
  • Prince-Pike, A.; Wilson, D.I.; Baroutian, S.; Andrews, J.; Gapes, D.J. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation. Water Res. 2015, 87, 225–236.
  • Zhen, G.; Lu, X.; Li, Y-Y.; Zhao, Y. Combined electrical-alkali pretreatment to increase the anaerobic hydrolysis rate of waste activated sludge during anaerobic digestion. Appl. Energy 2014, 128, 93–102.
  • Braguglia, C.M.; Gianico, A.; Mininni, G. Comparison between ozone and ultrasound disintegration on sludge anaerobic digestion. J. Environ. Manage. 2012, 95, 139–143.
  • Cesaro, A.; Belgiorno, V. Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem. Eng. J. 2014, 240, 24–37.
  • Guellil, A.; Boualam, M.; Quiquampoix, H.; Ginestet, P.; Audic, P.; Block, J.C. Hydrolysis of wastewater colloidal enzymes extracted from activated sludge flocs. Water Sci. Technol. 2001, 43(6), 33–40.
  • Whittington-Jones; K.J.; Molwantwa, J.B.; Rose, P.D. Enhanced hydrolysis of carbohydrates in primary sludge under biosulfidogenic conditions. Water Res. 2006, 40(8), 1577–1582.
  • Botheju, D.; Bakke, R. Oxygen effects in anaerobic digestion—A review. Open Waste Manage. J. 2011, 4, 1–19.
  • Montalvo, S.; Huiliñir, C.; Ojeda, F.; Castillo, A.; Lillo, L.; Guerrero, L. Microaerobic pretreatment of sewage sludge: Effect of air flow rate, pretreatment time and temperature on the aerobic process and methane generation Int. Biodeterior. Biodegrad. 2016, 110, 1–7.
  • Lim, J.W.; Wang, J.Y. Enhanced hydrolysis and methane yield by applying microaeration pretreatment to the anaerobic co-digestion of brown water and food waste. Waste Manage. 2013, 33(4), 813–819.
  • Kato, S.; Haruta, S.; Cui, Z.J.; Ishii, M.; Igarashi, Y. (2005), Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl. Environ. Microbiol. 2005, 71(11), 7099–7106.
  • Mshandete, A.; Bjornsson, L.; Kivaisi, A.K.; Rubindamayugi, S.T.; Mattiasson, B. Enhancement of anaerobic batch digestion of sisal pulp waste by mesophilic aerobic pretreatment. Water Res. 2005, 39(8), 1569–1575.
  • Nguyen, P.H.L.; Kuruparan, P.; Visvanathan, C. Anaerobic digestion of municipal solid waste as a treatment prior to landfill. Bioresour. Technol. 2007, 98(2), 380–387.
  • Gerritse, J.; Schut, F.; Gottschal, J.C. Mixed chemostat cultures of obligate aerobic and fermentative or methanogenic bacteria grown under oxygen limiting conditions. FEMS Microbiol. Lett. 1990, 66(1–3), 87–89.
  • Jenicek, P.; Keclik, F.; Maca, J.; Bindzar, J. Use of micro aerobic conditions for the improvement of anaerobic digestion of solid wastes. Water Sci. Technol. 2008, 58, 1491–1496.
  • Jenicek, P.; Celis, C.A.; Koubova, J.; Ruzickova, I. Change in the digested sludge quality at microaerobic digestion. J. Residuals Sci. Technol. 2011, 8(2), 39–44.
  • Huang, X.; Yun, S.; Zhu, J.; Du, T.; Zhang, Ch.; Li, X. Mesophilic anaerobic co-digestion of aloe peel waste with dairy manure in the batch digester: Focusing on mixing ratios and digestate stability. Bioresour. Technol. 2016, 218, 62–68.
  • Montañés, R.; Pérez, M.; Solera, R. Anaerobic mesophilic co-digestion of sewage sludge and sugar beet pulp lixiviation in batch reactors: Effect of pH control. Chem. Eng. J. 2014, 1, 492–499.
  • Koupaie, E.H.; Leiva, M.B.; Eskicioglu, C.; Dutil, C. Mesophilic batch anaerobic co-digestion of fruit-juice industrial waste and municipal waste sludge: Process and cost-benefit analysis. Bioresour. Technol. 2016, 152, 66–73.
  • American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th Ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, 2012.
  • Gerritse, J.; Gottschal, J.C. Two-membered mixed cultures of methanogenic and aerobic bacteria in O2 limited chemostats. J. Genetic Microbiol. 1993, 139(8), 1853–1860.
  • Conklin, A.; Bucher, R.; Stensel, H.D.; Ferguson, J. Effects of oxygen exposure on anaerobic digester sludge. Water Environ. Res. 2007, 79(4), 396–405.
  • Celis-Garcia, M.L.; Ramirez, F.; Revah, S.; Razo-Flores, E.; Monroy, O. Sulphide and oxygen inhibition over the anaerobic digestion of organic matter: Influence of microbial inmobilization type. Environ. Technol. 2004, 25(11), 1265–1275.
  • Gerardi, M.H. The Microbiology of Anaerobic Digesters; Wiley-Interscience, John Wiley & Sons, Inc.: Hoboken, NJ, 2003; 107–127.
  • Morgan-Sagastume, F; Allen, D.G. Activated sludge deflocculation under temperature upshifts from 30 to 45°C, Water Res. 2005, 39, 1061–1074.
  • Miron, Y.; Zeeman, G.; van Lier J.; Lettinga, G. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res. 2000, 34(5), 1705–1713.
  • Yang, L.; Huang, Y.; Zhao, M.; Huang, Z.; Miao, H.; Xu, Z.; Ruan, W. Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: Effect of pH adjustment. Int. Biodeterior. Biodegrad. 2015, 105, 153–159.
  • Rajeshwari, K.V.; Balakrishnan, M.; Kansal, A.; Lata, K.; Kishore, V.V.N. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew. Sustain. Energy Rev. 2000, 4, 135–156.
  • Markou, G. Improved anaerobic digestion performance and biogas production from poultry litter after lowering its nitrogen content. Bioresour. Technol. 2015, 196, 726–730.
  • Yenigün, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process Biochem. 2013, 48(5–6), 901–911.
  • Burgess, J.E.; Pletschke, B.I. Hydrolytic Enzymes in Sewage Sludge Treatment; Department of Biochemistry and Biotechnology, Rhodes University: Grahamstown, South Africa, 2008.
  • Diak, J.; Örmeci, B.; Kennedy, K.J. Effect of micro-aeration on anaerobic digestion of primary sludge under septic tank conditions. Bioprocess Biosyst. Eng. 2013, 36(4), 417–424.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.