Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 51, 2016 - Issue 14
336
Views
15
CrossRef citations to date
0
Altmetric
ARTICLES

Kinetics of methane production and biodegradation of linear alkylbenzene sulfonate from laundry wastewater

, , &
Pages 1288-1302 | Received 06 May 2016, Published online: 17 Aug 2016

References

  • Khomenkov, V.G.; Shevelev, A.B.; Zhukov, V.G.; Zagustina, N.A.; Bezborodov, A.M.; Popov, V.O. Organization of metabolic pathways and molecular-genetic mechanisms of xenobiotic degradation in microorganisms: A review. Appl. Biochem. Microbiol. 2008, 44(2), 117–135.
  • Ojo, O.A. Molecular strategies of microbial adaptation to xenobiotics in natural environment. Biotechnol. Mol. Biol. 2007, 2(1), 1–13.
  • Braga, J.K.; Varesche, M.B.A. Commercial laundry water characterization. Am. J. Anal. Chem. 2014, 5, 8–16.
  • Holt, M.S.; Waters, J.; Comber, M.H.I.; Armitage, R.; Morris, G.; Newbery, C. AIS/CESIO Environmental surfactant monitoring programme. SDIA Sewage treatment pilot study on linear alkylbenzene sulfonate (LAS). Water Res. 1995, 29(9), 2063–2070.
  • Scott, M.J.; Jones, M.N. The biodegradation of surfactants in the environment (Review). Biochem. Biophys. Acta. 2000, 1508(1–2), 235–251.
  • Ivanković, T.; Hrenović, J. Surfactants in the environment. Arhiv za Higijenu Rada i Toksikologiju. 2010, 61(1), 95–110.
  • Zábranská, I.; Štĕpová, J.; Wachtl, R.; Jeníček, P.; Dohányos, M. The activity of anaerobic biomass in thermophilic and mesophilic digesters at different loading rates. Water Sci. Technol. 2000, 42, 49–56.
  • Nwabanne, J.T.; Onukwuli, O.D.; Ifeakandu, C.M. Biokinetics of anaerobic digestion of municipal waste. Int. J. Environ. Res. 2009, 3(4), 511–516.
  • Mori, K.; Kamagata, Y. The challenges of studying the anaerobic microbial world. Microbes Environ. 2014, 29(4), 335–337.
  • Donoso-Bravo, A.; Mailier, J.; Martin, C.; Rodrıguez, J.; Aceves-Lara, C.A.; Wouwer, A.V. Model selection, identification and validation in anaerobic digestion: A review. Water Res. 2011, 45(17), 5347–5364.
  • Siles, J.A.; Martin, M.A.; Chica, A.; Borja, R. Kinetic modelling of the anaerobic digestion of wastewater derived from the pressing of orange rind produced in orange juice manufacturing. Chem. Eng. J. 2008, 140(1–3), 145–156.
  • Stanchev, V.; Stoilova, I.; Krastanov, A. Biodegradation dynamics of high catechol concentrations by Aspergillus awamori. J. Hazard Mater. 2008, 154(1–3), 396–402.
  • Monod, J. The growth of bacterial cultures. Ann. Rev. Microbiol. 1949, 3, 371–394.
  • Andrews, J.F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substance. Biotechnol. Bioeng. 1968, 10, 707–723.
  • Edwards, V.H. The influence of high substrate concentrations on microbial kinetics. Biotechnol. Bioeng. 1970, 12, 679–712.
  • Solomon, B.O.; Posten, C.; Harder, M.P.F.; Hecht, V.; Deckwer, W.D. Energetics of Pseudomonas cepacia growth in a chemostat with phenol limitation. J. Chem. Technol. Biotechnol. 1994, 60, 275–282.
  • Agarry, S.E.; Solomon, B.O.; Layokun, S.K. Substrate inhibition kinetics of phenol degradation by binary mixed culture of Pseudomonas aeruginosa and Pseudomonas fluorescence from steady state and wash-out data. African J. Biotechnol. 2008, 7(21), 3927–3933.
  • Camiloti, P.R.; Mockaitis, G.; Rodrigues, J.A.D.; Damianovic, M.H.R.Z.; Foresti, E.; Zaiat, M. Innovative anaerobic bioreactor with fixed-structured bed (ABFSB) for simultaneous sulfate reduction and organic matter removal. J. Chem. Technol. Biotechnol. 2014, 89, 1044–1050.
  • Motteran, F.; Braga, J.K.; Sakamoto, I.K.; Silva, E.L.; Varesche, M.B.A. Degradation of high concentrations of nonionic surfactant (linear alcohol ethoxylate) in an anaerobic fluidized bed reactor. Sci. Total Environ. 2014, 481, 121–128.
  • Duarte, I.C.S.; Oliveira, L.L.; Saavedra, N.K.D.; Fantinatti-Garboggini, F.; Oliveira, V.M.; Varesche, M.B.A. Evaluation of the microbial diversity in a horizontal-flow anaerobic immobilized biomass reactor treating linear alkylbenzene sulfonate. Biodegradation 2008, 19, 375–385.
  • APHA-AWWA-WPCF. Standard Methods for the Examination of Water and Wastewater, 20th Ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, 2005.
  • Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; Van'Triet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56(6), 1875–1881.
  • Mockaitis, G.; Rodrigues, J.A.D.; Foresti, E.; Zaiat, M. Toxic effects of cadmium (Cd2+) on anaerobic biomass: Kinetic and metabolic implications. J. Environ. Manage. 2012, 106, 75–84.
  • Griffiths, R.I.; Whiteley, A.S.; O'Donnell, A.G. Rapid method for coextration of DNA from natural environments for analysis of ribossomal DNA and rRNA based microbial community composition. Appl. Environ. Microbiol. 2000, 66(12), 5488–5491.
  • Kudo, Y.; Nakajima, T.; Miyaki, T.; Oyaizu, H. Methanogen flora of paddy soils in Japan. FEMS Microbiol. Ecol. 1997, 22, 39–48.
  • Nübel, U.; Engelen, B.; Felske, A.; Snaidr, J.; Wieshuber, A.; Amann, R.I.; Ludwig, W.; Backhaus, H. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J. Bacteriol. 1996, 178, 5636–5643.
  • Abreu, A.; Alves, J.I.; Pereira, M.A.; Karakashev, D.; Alves, M.M.; Angelidaki, I. Engineered heat treated methanogenic granules: A promising biotechnological approach for extreme thermophilic biohydrogen production. Bioresour. Technol. 2010, 101, 9577–9586.
  • Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl. Acids Res. 2013, 41(1), 1–11.
  • Fadrosh, D.W.; Ma, B.; Gajer, P.; Sengamalay, N.; Ott, S.; Brotman, R.M.; Ravel, J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2(1), 1–6.
  • Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Kyle, B.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; Huttley, G.A.; Kelley, S.T.; Knights, D.; Koenig, J.E.; Ley, R.E.; Lozupone, C.A.; McDonald, D.; Muegge, B.D.; Pirrung, M.; Reeder, J.; Sevinsky, J.R.; Turnbaugh, P.J.; Walters, W.A.; Widmann, J.; Yatsunenko, T.; Zaneveld, J.; Knight, R. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7(5), 335–336.
  • Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461.
  • Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Yanni Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Cheryl, R.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucl. Acids Res. 2013, 42, 1–10.
  • Saleh, M.M.A.; Mahmood, U.F. Anaerobic digestion technology for industrial wastewater treatment. Proceedings of the Eighth International Water Technology Conference (IWTC’08), Alexandria, Egypt, Mar. 26–28, 2004.
  • Massé, D.I.; Masse, L. Characterization of wastewater from hog slaughterhouses in Eastern Canada and evaluation of their in-plant wastewater treatment systems. Can. Agric. Eng. 2000, 42(3), 139–146.
  • Mohan, P.K.; Nakhla, G.; Yanful, E.K. Biodegradability of surfactants under aerobic, anoxic, and anaerobic conditions. J. Environ. Eng. 2006, 132(2), 279–283.
  • Aquino, S.F.; Stuckey, D.C. Bioavailability and toxicity of metal nutrients during anaerobic digestion. J. Environ. Eng. 2007, 133, 28–35.
  • Chang, M.W.; Holoman, T.P.; Yi, H. Molecular characterization of surfactant-driven microbial community changes in anaerobic phenanthrene-degrading cultures under methanogenic conditions. Biotechnol. Lett. 2008, 30, 1595–1601.
  • Shcherbakova, V.A.; Laurinavichius, K.S.; Akimenko, V.K. Toxic effect of surfactants and probable products of their biodegradation on methanogenesis in an anaerobic microbial community. Chemosphere 1999, 39, 1861–1870.
  • Braga, J.K.; Motteran, F.; Silva, E.L.; Varesche, M.B.A. Evaluation of bacterial community from anaerobic fluidized bed reactor for the removal of linear alkylbenzene sulfonate from laundry wastewater by 454-pyrosequence. Ecol. Eng. 2015, 82, 231–240.
  • Surerus, V.; Giordano, G.; Teixeira, L.A.C. Activated sludge inhibition capacity index. Braz. J. Chem. Eng. 2014, 31(2), 385–392.
  • Pant, D.; Adholeya, A. Biological approaches for treatment of distillery wastewater: A review. Bioresour. Technol. 2007, 98, 2321–2334.
  • Harwood, C.S.; Parales, R.E. The β-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 1996, 50, 553–590.
  • Gibson, J.; Harwood, C.S. Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu. Rev. Microbiol. 2002, 56, 345–369.
  • Schink, B.; Philipp, B.; Müller, J. Anaerobic degradation of phenolic compounds. Naturwissenschaften 2000, 87, 12–23.
  • Ahring, B.K. Status on science and application of thermophilic anaerobic digestion. Water Sci. Technol 1994, 30(12), 241–249.
  • Tang, Y.; Yang, Y.L.; Li, X.M.; Yang, Q.; Wang, D.B.; Zeng, G.M. The isolation, identification of sludge-lysing thermophilic bacteria and its utilization in solubilization for excess sludge. Environ. Technol. 2012, 33, 961–966.
  • Delforno, T.P.; Moura, A.G.L.; Okada, D.Y.; Varesche, M.B.A. Effect of biomass adaptation to the degradation of anionic surfactants in laundry wastewater using EGSB reactors. Bioresour. Technol. 2014, 154, 114–121.
  • Angelidaki, I.; Torang, L.; Waul, C.M.; Schmidt, J.E. Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS). Water Sci. Technol. 2004, 49, 115–122.
  • Lara-Martin, P.; Gómez-Parra, A.; Sanz, J.L.; Gonzáles-Mazo, E. Anaerobic degradation pathway of linear alkylbenzene sulfonates (LAS) in sulfate-reducing marine sediments. Environ. Sci. Technol. 2010, 44, 1670–1676.
  • Timmis, K.N.; Pieper, D.H. Bacteria designed for bioremediation. Trends Biotechnol 1999, 17, 201–204.
  • Van der Meer, J.R.; Eggen, R.I.L.; Zehnder, A.J.B.; De Vos, W.M. Sequence analysis of Pseudomonas sp. Strain P51 tcb gene cluster, which encodes metabolism of chlorinated catecols: Evidence for specialization of catecol 1, 2-dioxygenases for chlorinated substrates. J. Bacteriol. 1991, 173, 2425–2434.
  • Zhang, T.; Ke, S.Z.; Liu, Y.; Fang, H.P. Microbial characteristics of a methanogenic phenol-degrading sludge. Water Sci. Technol. 2005, 52(1–2), 73–78.
  • Boopathy, R. Anaerobic phenol degradation by microorganisms of swine manure. Curr. Microbiol. 1997, 35, 64–67.
  • Oliveira, L.L.; Costa, R.B.; Sakamoto, I.K.; Duarte, I.C.S.; Silva, E.L.; Varesche, M.B.A. LAS degradation in a fluidized bed reactor and phylogenetic characterization of the biofilm. Braz. J. Chem. Eng. 2013, 30, 521–529.
  • Maymo-Gatell, X.; Anguish, T.; Zinder, S.H. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by Dehalococcoides ethenogenes 195. Appl. Environ. Microbiol. 1999, 65, 3108.
  • Matthies, C.; Evers, S.; Ludwig, W.; Schink, B. Anaerovorax odorimutans gen. nov., sp. nov., a putrescine-fermenting, strictly anaerobic bacterium. Int. J. Syst. Evol. Microbiol. 2000, 50, 1591–1594.
  • Letowski, J.; Juteau, P.; Villemur, R.; Duckett, M.F.; Beaudet, R.; Lepine, F.; Bisaillon, J.G. Separation of a phenol carboxylating organism from a two-member strict anaerobic co-culture. Can. J. Microbiol. 2001, 47, 373–381.
  • Lewis, R.J. Hawley's Condensed Chemical Dictionary, 14th Ed.; John Wiley & Sons, Inc.: New York, NY, 2001; 307.
  • O'neil, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 13th Ed.; Merck and Co., Inc.: Whitehouse Station, NJ, 2001; 451.
  • Perales, J.A.; Manzano, M.A.; Sales, D.; Quiroga, J.M. Biodegradation kinetics of LAS in river water. Int. Biodeterior. Biodegrad. 1999, 43(4), 155–160.
  • Chen, S.; Liu, X.; Dong, X. Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int. J. Syst. Evol. Microbiol. 2005, 55(3), 1319–1324.
  • Wagener, S.; Schink, B. Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl. Environ. Microbiol. 1988, 54, 561–565.
  • Sousa, D.Z.; Pereira, M.A.; Stams, A.J.; Alves, M.M.; Smidt, H. Microbial communities involved in anaerobic degradation of unsaturated or saturated long-chain fatty acids. Appl. Environ. Microbiol. 2007, 73, 1054–1064.
  • Pelletier, E.; Kreimeyer, A.; Bocs, S.; Rouy, Z.; Gyapay, G.; Chouari, R.; Rivière, D.; Ganesan, A.; Daegelen, P.; Sghir, A.; Cohen, G.N.; Médigue, C.; Weissenbach, J.; Le Paslier, D. “Candidatus Cloacamonas Acidaminovorans”: Genome sequence reconstruction provides a first glimpse of a new bacterial division. J. Bacteriol. 2008, 190(7), 2572–2579.
  • Delforno, T.P.; Okada, D.Y.; Polizel, J.; Sakamoto, I.K.; Varesche, M.B.A. Microbial characterization and removal of anionic surfactant in an expanded granular sludge bed reactor. Bioresour. Technol. 2012, 107, 103–9.
  • Duarte, I.C.S.; França, P.; Okada, D.Y.; Prado, P.F.; Varesche, M.B.A. Anaerobic degradation of anionic surfactants by indigenous microorganisms from sediments of a tropical polluted river in Brazil. Int. J. Tropical Biol. Conserv. 2015, 63(1), 295–302.
  • Yang, Z.; Xu, X.; Guo, R.; Fan, X.; Zhao, X. Accelerated methanogenesis from effluents of hydrogen-producing stage in anaerobic digestion by mixed cultures enriched with acetate and nano-sized magnetite particles. Bioresour. Technol. 2015, 190, 132–139.
  • Godon, J-J.; Morinière, J.; Moletta, M.; Gaillac, M.; Bru, V.; Delgènes, J-P. Rarity associated with specific ecological niches in the bacterial world: The ‘Synergistes’ example. Environ. Microbiol. 2005, 7(2), 213–224.
  • Surkov, A.V.; Dubinina, G.A.; Lysenko, A.M.; Glöckner, F.O.; Kuever, J. Dethiosulfovibrio russensis sp. nov., Dethosulfovibrio marinus sp. nov. and Dethosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from ‘Thiodendron’ sulfur mats in different saline environments. Int. J. Syst. Evol. Microbiol. 2001, 51(2), 327–337.
  • Kaksonen, A.H.; Plumb, J.J.; Robertson, W.J.; Franzmann, P.D.; Gibson, J.A.E.; Puhakka, J.A. Culturable diversity and community fatty acid profiling of sulfate-reducing fluidized-bed reactors treating acidic, metal-containing wastewater. Geomicrobiol. J. 2004, 21, 469–480.
  • Narihiro, T.; Terada, T.; Kikuchi, K.; Iguchi, A.; Ikeda, M.; Yamauchi, T.; Shiraishi, K.; Kamagata, Y.; Nakamura, K.; Sekiguchi, Y. Comparative analysis of bacterial and archaeal communities in methanogenic sludge granules from upflow anaerobic sludge blanket reactors treating various food-processing, high-strength organic wastewaters. Microbes Environ. 2009, 24, 88–96.
  • Shen, Z.; Zhou, Y.; Wang, J. Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal. Bioresour. Technol. 2013, 131, 33–39.
  • Park, S.H.; Gibson, K.E.; Almeida, G.; Ricke, S.C. Assessment of gastrointestinal microflora in pasture raised chickens fed, two commercial prebiotics. J. Prob. Health 2014, 2(1), 2–6.
  • Bräuer, S.L.; Cadillo-Quiroz, H.; Ward, R.J.; Yavitt, J.B.; Zinder, S.H. Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int. J. Syst. Evol. Microbiol. 2011, 61(1), 45–52.
  • Boone, D.R. Genus I. Methanobacterium. In Bergey's Manual of Systematic Bacteriology, 2nd Ed.; Boone, D.R.; Castenholz, R.W., Eds.; Springer: New York, 2001; Vol. 1, 215–218.
  • Duarte, I.C.S.; Oliveira, L.L.; Mayor, M.S.; Okada, D.Y.; Varesche, M.B.A. Degradation of detergent (linear alkylbenzene sulfonate) in an anaerobic stirred sequencing-batch reactor containing granular biomass. Int. Biodeterior. Biodegrad. 2010, 64(2), 129–134.
  • Sakai, S.; Ehara, M.; Tseng, I-C.; Yamaguchi, T.; Bräuer, S.L.; Cadillo-Quiroz, H.; Zinder, S.H.; Imachi, H. Methanolinea mesophila, sp. nov., a hydrogenotrophic methanogen isolated from a rice field in Taiwan, and proposal of the new archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. Int. J. Syst. Evol. Microbiol. 2011, 62(6), 1389–1395.
  • Hagen, L.H.; Vivekanand, V.; Linjordet, R.; Pope, P.; Eijsink,V.G.H.; Horn, S.J. Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresour. Technology. 2014, 171, 350–359.
  • Hirasawa, J.S.; Sarti, A.; Del Aguila, N.K.; Varesche, M.B. Application of molecular techniques to evaluate the methanogenic archaea and anaerobic bacteria in the presence of oxygen with different COD: Sulfate ratios in a UASB reactor. Anaerobe. 2008, 14(4), 209–218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.