Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 1
353
Views
9
CrossRef citations to date
0
Altmetric
ARTICLES

Phototransformation of 2,4,6-tribromophenol in aqueous solution: Kinetics and photolysis products

, , , &
Pages 45-54 | Received 23 Mar 2016, Accepted 03 Aug 2016, Published online: 11 Oct 2016

References

  • OECD. SIDS Initial Assessment Report For SIAM 17. Available at http://www.inchem.org/documents/sids/sids/118796.pdf (accessed Oct 2014).
  • Lopez, P.; Brandsma, S.A.; Leonards, P.E.G.; De Boer, J. Methods for the determination of phenolic brominated flame retardants, and by-products, formulation intermediates and decomposition products of brominated flame retardants in water. J. Chromatogr. A 2009, 1216(3), 334–345.
  • Polo, M.; Llompart, M.; Garcia-Jares, C.; Gomez-Noya, G.; Bollain, M.H.; Cela, R. Development of a solid-phase microextraction method for the analysis of phenolic flame retardants in water samples. J. Chromatogr. A 2006, 1124(1–2), 11–21.
  • Sim, W.J.; Lee, S.H.; Lee, I.S.; Choi, S.D.; Oh, J.E. Distribution and formation of chlorophenols and bromophenols in marine and riverine environments. Chemosphere 2009, 77(4), 552–558.
  • Tolosa, I.; Bayona, J.M.; Albaiges, J. Identification and occurrence of brominated and nitrated phenols in estuarine sediments. Mar. Pollut. Bull. 1991, 22(12), 603–607.
  • Gutierrez, M.; Becerra, J.; Godoy, J.; Barra, R. Occupational and environmental exposure to tribromophenol used for wood surface protection in sawmills. Int. J. Environ. Health Res. 2005, 15(3), 171–179.
  • Howe, P.D.; Malcom, H. 2, 4, 6-Tribromophenol and Other Simple Brominated Phenols. Concise International Chemical Assessment Document. World Health Organization: Geneva, Switzerland, 2005; Vol. 66, 1827–1831.
  • Flodin, C.; Whitfield, F.B. Brominated anisoles and cresols in the red alga Polysiphonia sphaerocarpa. Phytochemistry 2000, 53(1), 77–80.
  • Chung, H.Y.; Ma, W.C.J.; Kim, T.S. Seasonal distribution of bromophenols in selected Hong Kong seafood. J. Agric. Food Chem. 2003, 51(23), 6752–6760.
  • Whitfield, F.B.; Helidoniotis, F.; Shaw, K.J.; Svoronos, D. Distribution of bromophenols in species of ocean fish from eastern Australia. J. Agric. Food Chem. 1998, 46(9), 3750–3757.
  • Vetter, W.; Janussen, D. Halogenated natural products in five species of antarctic sponges: Compounds with POP-like properties? Environ. Sci. Technol. 2005, 39(11), 3889–3895.
  • Hovander, L.; Malmberg, T.; Athanasiadou, M.; Athanassiadis, L.; Rahm, S.; Bergman, A.; Wehler, E.K. Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch. Environ. Contam. Toxicol. 2002, 42(1), 105–117.
  • Ohta, S.; Okumura, T.; Nishimura, H.; Nakao, T.; Shimizu, Y.; Ochiai, F.; Aozasa, O.; Miyata, H. Levels of PBDEs, TBBPA, TBPs, PCDDs/DFs, PXDDs/DFs and PBDDs/DFs in human milk of nursing women and dairy milk products in Japan. Organohalogen Compd. 2004, 66, 2891–2896.
  • Nichkova, M.; Germani, M.; Marco, M.P. Immunochemical analysis of 2,4,6-Tribromophenol for assessment of wood contamination. J. Agric. Food Chem. 2008, 56(1), 29–34.
  • Hamers, T.; Kamstra, J.H.; Sonneveld, E.; Murk, A.J.; Kester, M.H.; Andersson, P.L.; Legler, J.; Brouwer, A. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci. 2006, 92(1), 157–173.
  • Legler, J.; Dennekamp, M.; Vethaak, A.D.; Brouwer, A.; Koeman, J.H.; van der Burg, B.; Murk, A.J. Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays. Sci. Total Environ. 2002, 293(1–3), 69–83.
  • Meerts, I.A.T.M.; van Zanden, J.J.; Luijks, E.A.C.; van Leeuwen-Bol, I.; Marsh, G.; Jakobsson, E.; Bergman, A.; Brouwer, A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol. Sci. 2000, 56(1), 95–104.
  • Kester, M.H.; Bulduk, S.; Tibboel, D.; Meinl, W.; Glatt, H.; Falany, C.N.; Coughtrie, M.W.; Bergman, A.; Safe, S.H.; Kuiper, G.G. Potent inhibition of estrogen sulfotransferase by hydroxylated PCB metabolites: A novel pathway explaining the estrogenic activity of PCBs. Endocrinology 2000, 141(5), 1897–1900.
  • Canton, R.F.; Sanderson, J.T.; Letcher, R.J.; Bergman, A.; van den Berg, M. Inhibition and induction of aromatase (CYP19) activity by brominated flame retardants in H295R human adrenocortical carcinoma cells. Toxicol Sci. 2005, 88(2), 447–455.
  • Ding, L.; Murphy, M.B.; He, Y.H.; Xu, Y.; Yeung, L.W.Y.; Wang, J.X.; Zhou, B.S.; Lam, P.K.S.; Wu, R.S.S.; Giesy, J.P. Effects of brominated flame retardants and brominated dioxins on steroidogenesis in H295R human adrenocortical carcinoma cell line. Environ. Toxicol. Chem. 2007, 26(4), 764–772.
  • Rios, J.C.; Repetto, G.; Jos, A.; del Peso, A.; Salguero, M.; Camean, A.; Repetto, M. Tribromophenol induces the differentiation of SH-SY5Y human neuroblastoma cells in vitro. Toxicol. In Vitro 2003, 17(5–6), 635–641.
  • Hassenklover, T.; Predehl, S.; Pilli, J.; Ledwolorz, J.; Assmann, M.; Bickmeyer, U. Bromophenols, both present in marine organisms and in industrial flame retardants, disturb cellular Ca2+ signaling in neuroendocrine cells (PC12). Aquat. Toxicol. 2006, 76(1), 37–45.
  • Ahn, Y.B.; Rhee, S.K.; Fennell, D.E.; Kerkhof, L.J.; Hentschel, U.; Haggblom, M.M. Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba. Appl. Environ. Microbiol. 2003, 69(7), 4159–4166.
  • Boyle, A.W.; Phelps, C.D.; Young, L.Y. Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol. Appl. Environ. Microbiol. 1999, 65(3), 1133–1140.
  • Gao, B.; Liu, L.F.; Liu, J.D.; Yang, F.L. Photocatalytic degradation of 2,4,6-tribromophenol over Fe-doped ZnIn2S4: Stable activity and enhanced debromination. Appl. Catal. B: Environ. 2013, 129(3), 89–97.
  • Franzen, S.; Gilvey, L.B.; Belyea, J.L. The pH dependence of the activity of dehaloperoxidase from Amphitrite ornata. Biochim. Biophs. Acta 2007, 1774(1), 121–130.
  • Steen, P.O.; Grandbois, M.; McNeill, K.; Arnold, W.A. Photochemical formation of halogenated dioxins from hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and chlorinated derivatives (OH-PBCDEs). Environ. Sci. Technol. 2009, 43(43), 4405–4411.
  • Suh, Y.W.; Buettner, G.R.; Venkataraman, S.; Treimer, S.E.; Robertson, L.W.; Ludewig, G. UVA/B-induced formation of free radicals from decabromodiphenyl ether. Environ. Sci. Technol. 2009, 43(7), 2581–2588.
  • Burbano, A.A.; Dionysiou, D.D.; Suidan, M.T.; Richardson, T.L. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Res. 2005, 39(1), 107–118.
  • Voelker, B.M.; Morel, F.M.M.; Sulzberger, B. Iron redox cycling in surface waters: Effects of humic substances and light. Environ. Sci. Technol. 1997, 31(4), 1004–1011.
  • Joschek, H.I.; Miller, S.I. Photooxidation of phenol cresols and dihydroxybenzenes. J. Am. Chem. Soc. 1966, 88(14), 3273–3281.
  • Mvula, E.; Schuchmann, M.N.; Sonntag, C.V. Reactions of phenol-OH-adduct radicals. Phenoxyl radical formation by water elimination vs. oxidation by dioxygen. J. Chem. Soc. Perkin Trans. 2001, 3(3), 264–268.
  • Poerschmann, J.; Trommler, U.; Gorecki, T.; Kopinke, F.D. Formation of chlorinated biphenyls, diphenyl ethers and benzofurans as a result of Fenton-driven oxidation of 2-chlorophenol. Chemosphere 2009, 75(6), 772–780.
  • Raghavan, N.V.; Steenken, S. Electrophilic reaction of the oh radical with phenol. Determination of the distribution of isomeric dihydroxycyclohexadienyl radicals. J. Am. Chem. Soc. 1980, 102(10), 3495–3499.
  • Wu, F.; Deng, N.S. Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere 2009, 106(48), 20532–20537.
  • Fischer, M.; Warneck, P. Photodecomposition of nitrite and undissociated nitrous acid in aqueous solution. J. Phys. Chem. 1996, 100(48), 18749–18756.
  • Wenk, J.; Gunten, U.; Canonica, S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical. Environ. Sci. Technol. 2011, 45(4), 1334–1340.
  • Xiao, Y.J.; Fan, R.L.; Zhang, L. F; Yue, J.Q.; Webster, R.D.; Lim, T.T. Photodegradation of iodinated trihalomethanes in aqueous solution by UV 254 irradiation. Water Res. 2014, 49(1), 275–285.
  • Guerard, J.J.; Chin, Y.P.; Mash, H.; Hadad, C.M. Photochemical fate of sulfadimethoxine in aquaculture waters. Environ. Sci. Technol. 2009, 43(22), 8587–8592.
  • Miller, P.L.; Chin, Y.P. Indirect photolysis promoted by natural and engineered wetland water constituents: Processes leading to alachlor degradation. Environ. Sci. Technol. 2005, 39(12), 4454–4462.
  • Bendig, P.; Vetter, W. UV-induced formation of bromophenols from polybrominated diphenyl ethers. Environ. Sci. Technol. 2013, 47(8), 3665–3670.
  • Kajiwara, N.; Noma, Y.; Takigami, H. Photolysis studies of technical decabromodiphenyl ether (DecaBDE) and ethane (DeBDethane) in plastics under natural sunlight. Environ. Sci. Technol. 2008, 42(12), 4404–4409.
  • Rayne, S.; Forest, K.; Friesen, K.J. Mechanistic aspects regarding the direct aqueous environmental photochemistry of phenol and its simple halogenated derivatives. A review. Environ. Int. 2009, 35(2), 425–437.
  • Lei, M.; Wang, N.; Zhu, L.H.; Xie, C.S.; Tang, H.Q. A peculiar mechanism for the photocatalytic reduction of decabromodiphenyl ether over reduced graphene oxide-TiO2 photocatalyst. Chem. Eng. J. 2014, 241(4), 207–215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.