Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 1
224
Views
5
CrossRef citations to date
0
Altmetric
ARTICLES

Sorptive removal of HgII by red mud (bauxite residue) in contaminated landfill leachate

&
Pages 84-98 | Received 02 Jul 2016, Accepted 16 Aug 2016, Published online: 13 Oct 2016

References

  • Wang, S.; Ang, H.M.; Tadé, M.O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 2008, 72(11), 1621–1635.
  • Snars, K.; Gilkes, R.J. Evaluation of bauxite residues (red muds) of different origins for environmental applications. Appl. Clay Sci. 2009, 46(1), 13–20.
  • Liu, Y.; Naidu, R.; Ming, H. Red mud as an amendment for pollutants and liquid phases. Geoderma 2011, 163(1–2), 1–12.
  • Ochsenkühn-Petropulu, M; Lyberopulu, Th; Parissakis, G. Direct determination of landthanides, yttrium and scandium in bauxites and red mud from alumina production. Anal. Chim. Acta 1994, 296(3), 305–313.
  • Akinci, A.; Artir, R. Characterization of trace elements and radionuclides and their risk assessment in red mud. Mater. Charact. 2008, 59(4), 417–421.
  • Sas, Z.; Somlai, J.; Szeiler, G.; Kovács, T. Usability of clay mixed red mud in Hungarian building material production industry. J. Radioanal. Nucl. Chem. 2015, 306(1), 1–5.
  • Evans, K. Success and challenges in the management and use of bauxite residue. In Proceedings of the Bauxite residue valorisation and best practices conference, Leuven, Belgium, Oct. 5–7, 2015; Pontikes, Y. Ed., KU Leuven: Leuven, 2015; 113–128.
  • Xue, S.; Zhu, F.; Kong, X.; Wu, C.; Huang, L.; Huang, N.; Hartley, W. A review of the characterization and revegetation of bauxite residues (Red mud). Environ. Sci. Pollut. Res. 2016, 23(2), 1120–1132.
  • Mayes, W.M.; Burke, I.T.; Gomes, H.I.; Anton, A.D.; Molnár, M.; Feigl, V.; Ujaczki, E. Advances in understanding environmental risks of red mud after the Ajka Spill, Hungary. J. Sustain. Metall. 2016. doi:10.1007/s40831-016-0050-z.
  • Klauber, C.; Gräfe, M.; Power, G. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 2011, 108(1–2), 11–32.
  • European Directive of the European parliament and of the council on waste and repealing certain Directives 2008/98/EC; Official Journal, 2008, L312, Brussels.
  • López-Delgado, A.; Tayibi, H. Can hazardous waste become a raw material? The case study of an aluminium residue: A review. Waste Manag. Res. 2012, 30(5), 474–484.
  • Bhatnagar, A.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ. Technol. 2011, 32(3), 231–249.
  • Yu, M.H. Environmental Toxicology: Biological and Health Effects of Pollutants, 2nd ed.; CRC Press: Boca Raton, FL, 2005; 339 pp.
  • Eisler, R. Mercury Hazards to Living Organisms; CRC Press: Boca Raton, FL, 2006; 336 pp.
  • Mousavi, A.; Chávez, R.D.; Ali, A.M.S.; Cabaniss, S.E. Mercury in natural waters: A mini-review. Environ. Forensics 2011, 12(1), 14–18.
  • Steinnes, E. Mercury. In Heavy Metals in Soils, 2nd ed.; Alloway, B.J., Ed.; Blackie Academic and Professional, Chapman & Hall: Glasgow, UK, 1995; 245–259.
  • Sharma, A.; Sharma, A.; Arya, R.K. Removal of mercury (II) from aqueous solution: A review of recent work. Separ. Sci. Technol. 2015, 50(9), 1310–1320.
  • European Union. 2013/39/EU Directive of the European Parliament and of the Council of 2 August 2013 amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy 2013.
  • European Union. 2008/1102/EC Regulation No 1102/2008 of the European Parliament and of the Council of 22 October 2008 on the Banning of Exports of Metallic Mercury and Certain Mercury Compounds and Mixtures and the Safe Storage of Metallic Mercury 2013.
  • UNEP. Minamata Convention on Mercury, 2013. Available at http://www.mercuryconvention.org/Portals/11/documents/Booklets/Minamata%20Convention%20on%20Mercury_booklet_English.pdf (accessed May 2016).
  • Mukherjee, A.B.; Zevenhoven, R.; Brodersen, J.; Hylander, L.D.; Bhattacharya, P. Mercury in waste in the European Union: Sources, disposal methods and risks. Resour. Conserv. Recycl. 2004, 42(2), 155–182.
  • Cheng, H.; Hu, Y. Mercury in municipal solid waste in China and its control: A review. Environ. Sci. Technol. 2012, 46(2), 593–605.
  • Lee, S.W.; Lowry, G.V.; Hsu-Kim, H. Biogeochemical transformations of mercury in solid waste landfills and pathways for release. Environ. Sci.: Processes Impacts 2016, 18(2), 176–189.
  • Christensen, T.H.; Kjeldsen, P.; Bjerg, P.L.; Jensen, D.L.; Christensen, J.B.; Baun, A.; Albrechtsen, H.J.; Heron, G. Biogeochemistry of landfill leachate plumes. Appl. Geochem. 2001, 16(7–8), 659–718.
  • Slack, R.J.; Gronow, J.R.; Voulvoulis, N. Household hazardous waste in municipal landfills: Contaminants in leachate. Sci. Total Environ. 2005, 337(1–3), 119–137.
  • Öman, C.B.; Junestedt, C. Chemical characterization of landfill leachates–400 parameters and compounds. Waste Manage. 2008, 28(10), 1876–1891.
  • Kjeldsen, P.; Barlaz, M.A.; Rooker, A.P.; Baun, A.; Ledin, A.; Christensen, T.H. Present and long-term composition of MSW landfill leachate: A review. Crit. Rev. Environ. Sci. Technol. 2002, 32(4), 297–336.
  • Gworek, B.; Dmuchowski, W.; Gozdowski, D.; Koda, E.; Osiecka, R.; Borzyszkowski, J. Influence of a municipal waste landfill on the spatial distribution of mercury in the environment. PLoS ONE 2015, 10(7), e0133130.
  • Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal L 327, 0001-0073.
  • US EPA Clean Water Act 33 U.S.C. §1251 et seq, 1972. Available at: https://www.epa.gov/laws-regulations/summary-clean-water-act (accessed May 2016).
  • Gajski, G.; Oreščanin, V.; Garaj-Vrhovac, V. Chemical composition and genotoxicity assessment of sanitary landfill leachate from Rovinj, Croatia. Ecotoxicol. Environ. Saf. 2012, 78(1), 253–259.
  • Aziz, S.Q.; Mojiri, A.; Ting, S.J. Composition of leachate. In Control and Treatment of Landfill Leachate for Sanitary Waste Disposal; Aziz, H.A.; Amr, S.A., Eds.; IGI Global: Hershey, PA, 2016; 145–172.
  • Jaremski, J. New approach to inactive landfills containing wastes of mercury and other heavy metals. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, 2010; vol. 12, Article 10.
  • Vedrenne, M.; Vasquez-Medrano, R.; Prato-Garcia, D.; Frontana-Uribe, B.A.; Ibanez, J.G. Characterization and detoxification of a mature landfill leachate using a combined coagulation–flocculation/photo Fenton treatment. J. Hazard. Mater 2012, 205–206, 208–215.
  • Zamri, M.F.M.A.; Kamaruddin, M.A.; Yusoff, M.S.; Aziz, H.A.; Foo, K.Y. Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: Isotherm and kinetic study. Appl. Water Sci. 2015. doi:10.1007/s13201-015-0266-2.
  • Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150(3), 468–493.
  • Orescanin, V.; Ruk, D.; Kollar, R.; Mikelic, I.L.; Nad, K.; Mikulic, N. A combined treatment of landfill leachate using calcium oxide, ferric chloride and clinoptilolite. J. Environ. Sci. Health A: Tox. Hazard. Subst. Environ. Eng. 2011, 46(3), 323–328.
  • Foo, K.Y.; Hameed, B.H. An overview of landfill leachate treatment via activated carbon adsorption process. J. Hazard. Mater. 2009, 171(1–3), 54–60.
  • Zhang, F.S.; Nriagu, J.O.; Itoh, H. Mercury removal from water using activated carbons derived from organic sewage sludge. Water Res. 2005, 39(2–3), 389–395.
  • Modin, H.; Persson, K.M.; Andersson, A.; van Praagh, M. Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines. J. Hazard. Mater. 2011, 189(3), 749–754.
  • Mukherjee, S.; Mukhopadhyay, S.; Hashim, M.A.; Sen Gupta, B. Contemporary environmental issues of landfill leachate: Assessment & remedies. Crit. Rev. Environ. Sci. Technol. 2015, 45(5), 472–590.
  • Rubinos, D.A.; Barral, M.T. Use of red mud (bauxite residue) for the retention of aqueous inorganic mercury (II). Environ. Sci. Pollut. Res. 2015, 22(22), 17550–17568.
  • Rubinos, D.; Spagnoli, G.; Barral, M.T. Assessment of bauxite refining residue (red mud) as a liner for waste disposal facilities. Int. J. Min. Reclamat. Environ. 2015, 29(6), 433–452.
  • Griffin, R.A.; Frost, R.R.; Au, A.K.; Robinson, G.D.; Shimp, N.F. Attenuation of Pollutants in Municipal Landfill Leachate by Clay Minerals. Part 2-Heavy Metal Adsorption. Environmental Geology Notes 79; Illinois State Geological Survey: Urbana, IL, 1977.
  • Rubinos, D.A.; Barral, M.T. Fractionation and mobility of metals in bauxite red mud. Environ. Sci. Pollut. Res. 2013, 20(11), 7787–7802.
  • European Union Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Official Journal 1999, L182, 1–19.
  • Elmer, P. Analytical Methods Using the MHS–10 Mercury/Hydride System; Perkin-Elmer Corp.: Norwalk, CT, 1979.
  • He, F.; Zheng, W.; Liang, L.; Gu, B. Mercury photolytic transformation affected by low-molecular-weight natural organics in water. Sci. Total Environ. 2012, 416, 429–435.
  • Roy, W.R.; Krapac, I.G.; Chou, S.F.J.; Griffin, R.A. Batch-type Procedures for Estimating Soil Adsorption of Chemicals. EPA Report No. EPA/530/SW-87/006F; U.S. Environmental Protection Agency: Cincinnati, 1992; 1–100.
  • Visual MINTEQ version 3.1. Department of Land and Water Resources Engineering, Royal Institute of Technology (KTH), Stockholm 2013.
  • Gustafsson, J.P. Modeling the acid–base properties and metal complexation of humic substances with the Stockholm Humic Model. J. Colloid Interface Sci. 2001, 244(1), 102–112.
  • Christensen, J.B.; Christensen, T.H. The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater. Water Res. 2000, 34(15), 3743–3754.
  • Chai, X.; Liu, G.; Wu, J.; Tong, H.; Ji, R.; Zhao, Y. Effects of fulvic substances on the distribution and migration of Hg in landfill leachate. J. Environ. Monitor. 2011, 13(5), 1464–1469.
  • Chai, X.; Hao, Y.; Liu, G.; Li, Z.; Zhao, Y. The effect of aerobic conditions on the complexation ability between mercury and humic acid from landfill leachate and its implication for the environment. Chemosphere 2013, 92(4), 458–463.
  • Xi, B.D.; He, X.S.; Wei, Z.M.; Jiang, Y.H.; Li, D.; Pan, H.W.; Liu, H.L. The composition and mercury complexation characteristics of dissolved organic matter in landfill leachates with different ages. Ecotoxicol. Environ. Saf. 2012, 86, 227–232.
  • Gasper, J.D.; Aiken, G.R.; Ryan, J.N. A critical review of three methods used for the measurement of mercury (Hg2+)−dissolved organic matter stability constants. Appl. Geochem. 2007, 22(8), 1583–1597.
  • Blume, H.P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.M. Scheffer/Schachtschabel Soil Science; Springer-Verlag: Berlin-Heidelberg, 2016; 618 pp.
  • Gounaris, V.; Anderson, P.R.; Holsen, T.M. Characteristics and environmental significance of colloids in landfill leachate. Environ. Sci. Technol. 1993, 27(7), 1381–1387.
  • Baun, D.L.; Christensen, T.H. Speciation of heavy metals in landfill leachate: A review. Waste Manage. Res. 2004, 22(1), 3–23.
  • Ravichandran, M. Interactions between mercury and dissolved organic matter–a review. Chemosphere 2004, 55(3), 319–331.
  • Drexel, R.T.; Haitzer, M.; Ryan, J.N.; Aiken, G..R.; Nagy, K. Mercury(II) sorption to two Florida Everglades peats: Evidence for strong and weak binding and competition by disolved organic matter released from the peat. Environ. Sci. Technol. 2002, 36(19), 4058–4064.
  • Schuster, E. The behavior of mercury in the soil with special emphasis on complexation and adsorption proceses—A review of the literature. Water Air Soil Pollut. 1991, 56(1), 667–680.
  • Hatje, V.; Payne, T.E.; Hill, D.M.; McOrist, G.; Birch, G.F.; Szymczak, R. Kinetics of trace element uptake and release by particles in estuarine waters: Effects of pH, salinity, and particle loading. Environ. Int. 2003, 29(5), 619–629.
  • Gerbig, C.A.; Kim, C.S.; Stegemeier, J.P; Ryan, J.N.; Aiken, G.R. Formation of nanocolloidal metacinnabar in mercury-DOM-sulfide systems. Environ. Sci. Technol. 2011, 45(21), 9180–9187.
  • Xu, H.; Allard, B. Effects of a fulvic acid on the speciation and mobility of mercury in aqueous solutions. Water Air Soil Pollut. 1991, 56(1), 709–717.
  • Barrow, N.J.; Cox, C. The effects of pH and chloride concentration on mercury sorption. I. By goethite. J. Soil Sci. 1992, 43(2), 295–304.
  • Yin, Y.; Allen, H.E.; Li, Y.; Huang, C.P.; Sanders, P.F. Adsorption of mercury (II) by soil: Effects of pH, chloride and organic matter. J. Environ. Qual. 1996, 25(4), 837–844.
  • Wang, J.; Wang, T.; Mallhi, H.; Liu, Y.; Ban, H.; Ladwig, K. The role of ammonia on mercury leaching from coal fly ash. Chemosphere 2007, 69(10), 1586–1592.
  • Jensen, D.L.; Ledin, A.; Christensen, T.H. Speciation of heavy metals in landfill-leachate polluted groundwater. Water Res. 1999, 33(11), 2642–2650.
  • Papini, M.P; Majone, M.; Rolle, E. Kaolinite sorption of Cd, Ni and Cu from landfill leachates: Influence of leachate composition. Water Sci. Technol. 2001, 44(2–3), 343–350.
  • Majone, M.; Papini, M.P.; Rolle, E. Influence of metal speciation in landfill leachates on kaolinite sorption. Water Res. 1998, 32(3), 882–890.
  • Lema, J.M.; Méndez, R.; Blázquez, R. Characteristics of landfill leachates and alternatives for their treatment: A review. Water Air Soil Pollut. 1988, 40(3), 223–250.
  • Huo, S.; Xi, B.; Yu, H.; He, L.; Fan, S.; Liu, H. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. J. Environ. Sci. 2008, 20(4), 492–498.
  • Chai, X.; Liu, G.; Zhao, X.; Hao, Y.; Zhao, Y. Complexion between mercury and humic substances from different landfill stabilization processes and its implication for the environment. J. Hazard. Mater. 2012, 209–210, 59–66.
  • Haitzer, M.; Aiken, G.R.; Ryan, J.N. Binding of mercury(II) to dissolved organic matter: The role of the mercury-to-DOM concentration range. Environ. Sci. Technol. 2002, 36(16), 3564–3570.
  • Schroth, B.K.; Sposito, G. Effect of landfill leachate organic acids on trace metal adsorption by kaolinite. Environ. Sci. Technol. 1998, 32(10), 1404–1408.
  • Murphy, E.M.; Zachara, J.M. The role of sorbed humic substances on the distribution of organic and inorganic contaminants in ground water. Geoderma 1995, 67(1–2), 103–124.
  • Keenan, J.D.; Steiner, R.L.; Fungaroli, A.A. Landfill leachate treatment. J. Water Pollut. Control Fed. 1984, 56(1), 27–33.
  • Sarkar, D.; Essington, M.E.; Misra, K.C. Adsorption of mercury (II) by kaolinite. Soil Sci. Soc. Am. J. 2000, 64, 1968–1975.
  • Rocha, L.S.; Lopes, C.B.; Henriques, B.; Tavares, D.S.; Borges, J.A.; Duarte, A.C.; Pereira, E. Competitive effects on mercury removal by an agricultural waste: Application to synthetic and natural spiked waters. Environ Technol. 2014, 35(5–8), 661–673.
  • Newton, D.W.; Ellis, R.; Paulsen, G.M. Effect of pH and complex formation on mercury (II) adsorption to bentonite. J. Environ. Qual. 1976, 5, 251–254.
  • Majone, M.; Papini, M.P.; Rolle, E. Heavy metal speciation in landfill leachates by exchange on Chelex–100 resin. Environ. Technol. 1996, 17(6), 587–595.
  • Escudero, C.; Gabaldón, C.; Marzal, P.; Villaescusa, I. Effect of EDTA on divalent metal adsorption onto grape stalk and exhausted coffee wastes. J. Hazard. Mater. 2008, 152(2), 476–485.
  • Zhang, J.; Dai, J.; Wang, R.; Li, F.; Wang, W. Adsorption and desorption of divalent mercury (Hg2+) on humic acids and fulvic acids extracted from typical soils in China. Colloids Surf. A: Physicochem. Eng. Aspects 2009, 335(1–3), 194–201.
  • Singh, J.; Huang, P.M.; Hammer, U.T., Liaw, W.K. Influence of citric acid and glycine on the adsorption of mercury(II) by kaolinite under various pH conditions. Clays Clay Miner. 1996, 441(1), 41–48.
  • Foti, C.; Giuffrè, O.; Lando, G.; Sammartano, S. Interaction of inorganic mercury(II) with polyamines, polycarboxylates, and amino acids. J. Chem. Eng. Data 2009, 54(3), 893–903.
  • Reid, R.S.; Podanyi, B. A proton NMR study of the glycine–mercury(II) system in aqueous solution. J. Inorg. Biochem. 1988, 32(3), 183–195.
  • Maeda, M.; Tsunoda, M. Coordination of mercury(II) to amino acids under physiological conditions. J. Inorg. Biochem. 1992, 48(3), 227–232.
  • Chodura, A.; Fischer, K. Metallsorption an Illit und Metallfreisetzung unter Einwirkung der Aminosäuren Glycin und Histidin. UWSF-Z. Umweltchem. Ökotox. 1995, 7(3), 148–154.
  • Churchill, H.; Teng, H.; Hazen, R.M. Correlation of pH-dependent surface interaction forces to amino acid adsorption: Implications for the origin of life. Am. Mineral 2004, 89(7), 1048–1055.
  • Mc Bride, M.B. Influence of glycine on Cu2+ adsorption by microcrystalline gibbsite and boehmite. Clays Clay Miner. 1985, 33(5), 397–402.
  • Milenković, A.S.; Smičiklas, I.D.; Šljivić-Ivanović, M.Z.; Živković, L.S.; Vukelić, N.S. Effect of experimental variables onto Co2+ and Sr2+ sorption behavior in red mud-water suspensions. J. Environ. Sci. Health A. 2016, 51(8), 679–690.
  • Robles, I.; Lozano, M.J.; Solís, S.; Hernández, G.; Paz, M.V.; Olvera, M.G.; Bustos, E. Electrokinetic treatment of mercury-polluted soil facilitated by ethylenediaminetetraacetic acid coupled with a reactor with a permeable reactive barrier of iron to recover mercury(II) from water. Electrochim. Acta 2015, 181, 68–72.
  • Smith, R.M.; Martell, A.E. NIST Critically Selected Stability Constants of Metal Complexes Database 46. Version 8.0. U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology Standard, Reference Data Program: Gaithersburg, 2004.
  • Huang, C.P.; Blankenship, D.W. The removal of mercury(II) from dilute aqueous solution by activated carbon. Water Res. 1984, 18(1), 37–46.
  • Ghodbane, I.; Hamdaoui, O. Removal of mercury(II) from aqueous media using eucalyptus bark: Kinetic and equilibrium studies. J. Hazard. Mater. 2006, 160(2–3), 301–309.
  • Langmuir, I. The adsorption of gases on plane surface of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40(9), 1361–1403.
  • Ng, J.C.Y.; Cheung, W.H.; McKay, G. Equilibrium studies for the sorption of lead from effluents using chitosan. Chemosphere 2003, 52(6), 1021–1030.
  • Kumar, K.V. Comparative analysis of linear and non–linear methods of estimating the sorption isotherm parameters for malachite green onto activated carbon. J. Hazard. Mater. 2006, 136(2), 197–202.
  • Hall, K.R.; Eagleton, L.C.; Acrivos, A.; Vermeulen, T. Pore and solid diffusion kinetics in fixed-bed adsorption under constant pattern conditions. Ind. Eng. Chem. Fundam. 1966, 5(2), 212–223.
  • Sohn, S.; Kim, D. Modification of Langmuir isotherm in solution systems–definition and utilisation of concentration dependent factor. Chemosphere 2005, 58(1), 115–123.
  • Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–470.
  • Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156(1), 2–10.
  • Halim, C.E.; Scott, J.A.; Natawardaya, H.; Amal, R.; Beydoun, D.; Low, G. Comparison between acetic acid and landfill leachates for the leaching of Pb(II). Cd(II), As(V), and Cr(VI) from cementitious wastes. Environ. Sci. Technol. 2004, 38(14), 3977–3983.
  • Burke, I.T.; Mayes, W.M.; Peacock, C.L.; Brown, A.P.; Jarvis, A.P.; Gruiz, K. Speciation of arsenic, chromium, and vanadium in red mud amples from the Ajka spill site, Hungary. Environ. Sci. Technol. 2012, 46(6), 3085–3092.
  • Gensemer, R.W.; Playle, R.C. The bioavailability and toxicity of aluminum in aquatic environments. Crit. Rev. Environ. Sci. Technol. 1999, 29(4), 315–450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.