Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 2
238
Views
14
CrossRef citations to date
0
Altmetric
ARTICLES

Removal of Ni and Zn in contaminated neutral drainage by raw and modified wood ash

, , , &
Pages 117-126 | Received 06 May 2016, Accepted 03 Sep 2016, Published online: 21 Oct 2016

References

  • Nordstrom, K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and microbiology of mine drainage: An update. Appl. Geochem. 2015, 57, 3–16.
  • United States Environmental Protection Agency (USEPA). Reference Guide to Treatment Technologies for Mining-influenced Water. EPA 542-R-14-001, USEPA: Washington, D.C, 2014; 94 p.
  • Stantec Consulting Ltd. Review of Water Quality Issues in Neutral pH Drainage: Examples and Emerging Priorities for the Mining Industry in Canada. Report prepared for the MEND initiative, Quebec City, Canada, 2004.
  • Visa, M.; Isac, L.; Duta, A. Fly ash adsorbents for multi-cation wastewater treatment. Appl. Surf. Sci. 2012, 258(17), 6345–6352.
  • Sahoo, P.K.; Kim, K.; Equeenuddin, S.M.; Powell, M.A. Current approaches for mitigating acid mine drainage. Rev. Environ. Contam. Toxicol. 2013, 226, 1–32.
  • Stumm, W.; Morgan, J.J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley & Sons, Inc.: New York, 1996; 1022 p.
  • Genty, T.; Bussière, B.; Benzaazoua, M. Capacity of wood ash filters to remove iron from acid mine drainage: Assessment of retention mechanism. Mine Water Environ. 2012, 31(4), 273–286.
  • Vadapalli, V.R.K.; Gitari, M.W.; Petrik, L.F.; Etchebers, O.; Ellendt, A. Integrated acid mine drainage management using fly ash. J. Environ. Sci. Health., A. 2012, 47, 60–69.
  • Heviánkova, S.; Bestová, I.; Kyncl, M. The application of wood ash as a reagent in acid mine drainage treatment. Miner. Eng. 2014, 56, 109–111.
  • Bayat, B. Comparative study of adsorption properties of Turkish fly ashes I. The case of nickel (II), copper (II) and zinc (II). J. Hazard. Mater. 2002, 95(3), 251–273.
  • Cetin, S.; Pehlivan, E. The use of fly ash as a low cost, environmental friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions. Colloids Surf., A. 2007, 298(1–2), 83–87.
  • Cho, H.; Oh, D.; Kim, K. A study of removal characteristics of heavy metals from aqueous solutions by fly ash. J. Hazard. Mater. 2005, 127(1–3), 187–195.
  • Prasad, B.; Mortimer, R.J.G. Treatment of acid mine drainage using fly ash zeolite. Water Air Soil Pollut. 2011, 218(1), 667–679.
  • Hui, K.S.; Chao, C.Y.H.; Kot, S.C. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J. Hazard. Mater. 2005, 127(1–3), 89–101.
  • Alinnor, I.J. Adsorption of heavy metal ions from aqueous solutions by fly ash. Fuel. 2007, 86(5–6), 853–857.
  • Álvarez-Ayuso, E.; Garcia-Sanchez, A.; Querol, X. Purification of metal electroplating waste waters using zeolites. Water Res. 2003, 37(20), 4855–4862.
  • Qiu, W.; Zheng, Y. Removal of lead, copper, nickel, cobalt and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chem. Eng. J. 2009, 145(3), 483–488.
  • Garcia-Mendieta, A.; Solache-Rios, M.; Olguin, M.T. Evaluation of the sorption properties of a Mexican clinoptilolite-rich tuff for iron, manganese and iron-manganese systems. Micropor. Mesopor. Mat. 2009, 118(1–3), 489–495.
  • Querol, X.; Moreno, N.; Umaña, J.C.; Alastuey, A.; Hernández, E.; López-Soler, A.; Plana, F. Synthesis of zeolites from coal fly ash: An overview. Int. J. Coal Geol. 2002, 50(1–4), 413–423.
  • Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89(5), 913–933.
  • Girón, R.P.; Ruiz, B.; Fuente, E.; Gil, R.R.; Suárez-Ruiz, I. Properties of fly ash from forest biomass combustion. Fuel 2013, 144, 71–77.
  • American Society for Testing and Materials (ASTM). Standard Test Method for pH of Soils. Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, 1995; Vol. 04.08, Section D4972-95a, 27–28.
  • Fiol, N.; Villaescusa, I. Determination of sorbent point zero charge: Usefulness in sorption studies. Environ. Chem. Lett. 2009, 7(1), 79–84.
  • American Society for Testing and Materials (ASTM). Standard Test Method for Determination of Total Solids in Biomass. Annual Book of ASTM Standards; ASTM: West Conshohocken, PA, 2008; Vol. 05.06, Section E1756-08.
  • Centre d'expertise et analyse environnementale du Québec (CEAEQ). Détermination de la matière organique par incinération: méthode de perte au feu (PAF); Quebec's Ministry of Environment, Quebec City, Canada, 2003; MA. 1010-PAF 1.0., 9 p.
  • Chapman, H.D. Cation-exchange capacity. In Methods of Soil Analysis. Part 1. Agronomy Monograph 9; Black, C.A.; Evans, D.D.; White, J.L.; Ensminger, L.E.; Clark, F.E., Eds.; ASA: Madison, WI, 1965; 891–901.
  • Alidoust, D.; Kawahigashi, M.; Yoshizawa, S.; Sumida, H.; Watanabe, M. Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. J. Environ. Manage. 2015, 150, 103–110.
  • Ho, Y.S.; McKay, G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf. Environ. 1998, 76(4), 332–340.
  • Ministry of Justice. Metal Mining Effluent Regulations (SOR/2002–222); Government of Canada, 2015. Available at http://laws-lois.justice.gc.ca/eng/regulations/SOR-2002-222/ (accessed Mar 2016).
  • Frau, F.; Medas, D.; Da Pelo, S.; Wanty, R.B.; Cidu, R. Environmental effects on the aquatic system and metal discharge to the Mediterranean Sea from a near-neutral zinc-ferrous sulfate mine drainage. Water Air Soil Pollut. 2015, 226, 55.
  • Heikkinen, P.M.; Räisänen, M.L.; Johnson, R.H. Geochemical characterization of seepage and drainage water quality from two sulfide mine tailings impoundments: Acid mine drainage versus neutral mine drainage. Mine Water Environ. 2009, 28(1), 30–49.
  • Izidoro, J.; Fungaro, D.A.; Abbott, J.; Wang, S. Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel 2013, 103, 827–834.
  • Gustafsson, J.P. Visual MINTEQ version 3.1. 2013. Available at http://vminteq.lwr.kth.se/ (accessed Feb 2016).
  • Mishra, T.; Tiwari, S.K. Studies on sorption properties of zeolite derived from Indian fly ash. J. Hazard. Mater. 2006, 137(1), 299–303.
  • Jha, V.K.; Matsuda, M.; Miyake, M. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni2+, Cu2+, Cd2+ and Pb2+. J. Hazard. Mater. 2008, 160(1), 148–153.
  • Jha, V.K.; Nagae, M.; Matsuda, M.; Miyake, M. Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained zeolite X in multi-metal systems. J. Environ. Manage. 2009, 90(8), 2507–2514.
  • Shah, B.A.; Mistry, C.B.; Shah, A.V. Sequestration of Cu(II) and Ni(II) from wastewater by synthesized zeolitic materials: Equilibrium, kinetic and column dynamics. Chem. Eng. J. 2013, 220, 172–184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.