Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 2
449
Views
28
CrossRef citations to date
0
Altmetric
ARTICLES

Aquatic toxicity and biodegradability of a surfactant produced by Bacillus subtilis ICA56

, , , , , & show all
Pages 174-181 | Received 15 Jun 2016, Accepted 13 Sep 2016, Published online: 28 Oct 2016

References

  • Paria, S. Surfactant-enhanced remediation of organic contaminated soil and water. Adv. Colloid Interf. Sci. 2008, 138(1), 24–58.
  • Al-Wahaibi, Y.; Joshi S.; Al-Bahry, J.S.; Elshafie, A.; Al-Bemani, A.; Shibulal, B. Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf. B 2014, 114, 324–333.
  • Rodrigues, L.R.; Texeira, J.A. Biomedical and theurapeutic applications of biosurfactants. In Biosurfactants; Sen, R., Ed.; Landes Bioscience and Springer Science+Business Media: New York, NY, 2010; 75–87.
  • Silva, R.D.C.F.; Almeida, D.G.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L. A. Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int. J. Mol. Sci. 2014, 15(7), 12523–12542.
  • Soberón-Chavez, G.; Maier, R.M. Biosurfactants: a general overview. In Biosurfactants. From genes to applications; Soberón-Chavez, G., Ed.; Springer: Münster, 2011; 1–1.
  • Galabova, D.; Sotirova, A.; Karpenkoy, E.; Karpenko, O. Role of microbial Surface-active compounds in environmental protection. In The Role of Colloidal Systems in Environmental Protection; Fanun, M., Ed.; Springer: Berlin, 2014; 41–83.
  • Franzetti, A.; Gandolfi, I.; Raimondi, C.; Bestetti, G.; Banat, I.M.; Smyth, T.J.; Papacchini, M.; Cavallo, M.; Fracchia, L. Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCT5. Bioresour. Technol. 2012, 108, 245–251.
  • Edwards, K.R.; Lepo, J.E.; Lewis, M.A. Toxicity comparison of biosurfactants and synthetic surfactants used in oil spill remediation to two estuarine species. Mar. Pollut. Bull. 2003, 46(10), 1309–1316.
  • Ivshina, I.B.; Kuyukina, M.S.; Philp, J.C.; Christofi, N. Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World J. Microbiol. Biotechnol. 1998, 14(5), 711–717.
  • Mnif, I.; Ghribi, D. Microbial derived surface active compounds: properties and screening concept. World J. Microbiol. Biotechnol. 2015, 31(7), 1001–1020.
  • Helenius, A.; Simons, K. Solubilization of membranes by detergents. Biochim. Biophys. Acta 1975, 415, 29–79.
  • Van Hamme, J.D.; Ward, O.P. Influence of chemical surfactants on the biodegradation of crude oil by a mixed bacterial culture. Can. J. Microbiol. 1999, 45(2), 130–137.
  • Raymond, J.W.; Rogers, T.N.; Shonnard, D.R.; Kline, A.A. A review of structure-based biodegradation estimation methods. J. Hazard. Mater. 2001, 84(2), 189–215.
  • Sineva, A. Adsorption of synthetic surfactants from aqueous solutions on natural adsorbents. In The Role of Colloidal Systems in Environmental Protection; Fanun, M., Ed.; Elsevier: Amsterdam, 2014; 142–171.
  • Hagner, M.; Penttinen, O.P.; Pasanen, T.; Tiilikkala, K.; Setälä, H. Acute toxicity of birch tar oil on aquatic organisms. Agric. Food Sci. 2010, 19, 24–32.
  • Guhl, W.; Steber, J. The value of biodegradation screening test results for predicting the elimination of chemicals' organic carbon in waste water treatment plants. Chemosphere 2006, 63(1), 9–16.
  • França, I.W.L.; Parente Lima, A.; Monteiro Lemos, J.A.; Faria Lemos, C.G.; Melo, V.M.M.; Batista de Santana, H.; Gonçalves, L.R.B. Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catal. Today 2015, 255, 10–15.
  • Morán, A.C.; Olivera, N.; Commendatore, M.; Esteves, J.L.; Siñeriz, F. Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9. Biodegradation 2000, 11(1), 65–71.
  • Freitas de Oliveira, D.W.; França, I.W.L.; Felix, A.K.; Martins, J J.L.; Giro, M.E. A.; Melo, V.M.M.; Gonçalves, L.R.B. Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf. B. 2013, 101, 34–43.
  • Cooper, D.G.; Goldenberg, B.G. Surface-active agents from two bacillus species. Appl. Environ. Microbiol. 1987, 53(2), 224–229.
  • Moya-Ramírez, I.; Altmajer Vaz, D.; Banat, I.M.; Marchant, R.; Jurado Alameda, E.; García-Román, M. Hydrolysis of olive mill waste to enhance rhamnolipids and surfactin production. Bioresour. Technol. 2016, 205, 1–6.
  • Lechuga Villena, M.; Fernández-Serrano, M.; Jurado, E.; Fernández-Arteaga, A.; Burgos, A.; Ríos, F. Influence of ozonation process on the microbial degradation of surfactants. Procedia Engineering 2012, 42, 1038–1044
  • Maass, D.; Moya Ramírez, I.; García Román, M.; Jurado Alameda, E.; Ulson de Souza, A.A.; Borges Valle, J.A.; Altmajer Vaz, D. Two-phase olive mill waste (alpeorujo) as carbon source for biosurfactant production, J. Chem. Technol. Biotechnol. 2016, 91(7), 1990–1997.
  • Altmajer Vaz, D.; Gudiña, E.J.; Jurado Alameda, E.; Teixeira, J.A.; Rodrigues, L.R. Performance of a biosurfactant produced by a Bacillus subtilis strain isolated from crude oil samples as compared to commercial chemical surfactants. Colloids Surf. B. 2012, 89, 167–174.
  • Deleu, M.; Nott, K.; Brasseur, R.; Jacques, P.; Thonart, P.; Dufrène, Y.F. Imaging mixed lipid monolayers by dynamic atomic force microscopy. Biochim. Biophys. Acta 2001, 1513(1), 55–62.
  • Mulligan, C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005, 133(2), 183–198.
  • Sigmaâ–Aldrich, Product details surfactin from Bacillus subtilis (S3523), 2016. Available at http://www.sigmaaldrich.com/catalog/product/sigma/s3523?lang=es&region=ES (accessed Apr 2016).
  • Pereira, J.F.; Gudiña, E.J.; Costa, R.; Vitorino, R.; Teixeira, J.A.; Coutinho, J.A.; Rodrigues, L.R. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 2013, 111, 259–268.
  • Faria, A.F.; Teodoro-Martinez, D.S.; Barbosa, G.N.O.; Vaz, B.G.; Silva, I.S.; Garcia, J.S.; Tótola, M.R.; Eberlin, M.N.; Grossman, M.; Alves, O.L.; Durrant, L.R. Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem. 2011, 46(10), 1951–1957.
  • Kowall, M.; Vater, J.; Kluge, B.; Bein, B.T.; Franke, P.; Ziessow, D. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colloid Interface Sci. 1998, 204(1), 1–8.
  • Lima, T.M.S.; Procópio L.C.; Brandão F.D.; Carvalho A.M.X.; Tótola M.R.; Borges A.C. Biodegradability of bacterial surfactants. Biodegradation 2011, 22(3), 585–592.
  • Bondarenko, O.; Rahman, P.; Rahman, T.; Kahru, A.; Ivask, A. Effects of rhamnolipids from Pseudomonas aeruginosa DS10-129 on luminescent bacteria: Toxicity and modulation of cadmium bioavailability. Microb. Ecol. 2010, 59(3), 588–600.
  • Jurado, E.; Fernández-Serrano, M.; Olea, J.N.; Lechuga, M.; Jiménez, J.L.; Ríos, F. Acute toxicity of alkylpolyglucosides to Vibrio fischeri, Daphnia magna and microalgae: a comparative study. Bull. Environ. Contam. Toxicol. 2012, 88(2), 290–295.
  • Piętka-Ottlik, M.; Frąckowiak, R.; Maliszewska, I.; Kołwzan, B.; Wilk, K.A. Ecotoxicity and biodegradability of antielectrostatic dicephalic cationic surfactants. Chemosphere 2012, 89(9), 1103–1111.
  • Francius, G.; Dufour, S.; Deleu, M.; Paquot, M.; Mingeot Leclercq, M.P.; Dufréne, Y.F. Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity. Biochim. Biophys. Acta. 2008, 1778(10), 2058–2068.
  • Sung, W.S.; Lee, D.G. The combination effect of Korean red ginseng saponins with kanamycin and cefotaxime against methicillin-resistant Staphylococcus aureus. Biol. Pharm. Bull. 2008, 31(8), 1614–1617.
  • Avato, P.; Bucci, R.; Tava, A.; Vitali, C.; Rosato, A.; Bialy, Z.; Jurzysta, M. Antimicrobial activity of saponins from Medicago sp.: structure–activity relationship. Phytother. Res. 2006, 20(6), 454–457.
  • El Izzi, A.; Benie, T.; Thieulant, M.L.; Le Men-Oliver, L.; Duval, J. Stimulation of LH release from cultured pituitary cells by saponins of Petersianthus macrocarpus: a permeabilising effect. Planta Med. 1992, 58(3), 229–233.
  • Authi, K.S.; Rao, G.H.R.; Evenden, B.J.; Crawford, N. Action of guanosine 5´-(beta-thio) diphosphate on thrombin-induced activation and calcium mobilization in saponin-permeabilized and intact human platelets. Biochem. J. 1988, 255(3), 885–894.
  • Villegas-Navarro, A.; Romero González, M.C.; Lopez, E.R.; Aguilar, R.D.; Marcal, W.S. Evaluation of Daphnia magna as an indicator of toxicity and treatment efficacy of textile wastewaters. Environ. Int. 1999, 25(5), 619–624.
  • Hodges, G.; Roberts, D.W.; Marshall, S.J.; Dearden, J.C. The aquatic toxicity of anionic surfactants to Daphnia magna: a comparative QSAR study of linear alkylbenzene sulphonates and ester sulphonates. Chemosphere 2006, 63(9), 1443–1450.
  • Ribosa, I.; Garcia, M.T.; Sanchez Leal, J.; Gonzalez, J.J. Photobacterium phosphoreum test data of non-ionic surfactants. Toxicol. Environ. Chem. 1993, 39(3–4), 237–241.
  • Pérez, L.; Pinazo, A.; Teresa García, M.; Lozano, M.; Manresa, A.; Angelet, M., Vinardell, M.P.; Mijans, M.; Pons, R.; Rosa Infante, M. Cationic surfactants from lysine: synthesis, micellization and biological evaluation, Eur. J. Med. Chem. 2009, 44(5), 1884–1892.
  • Blasé, C.; Vasseys, P. Algal Microplate Toxicity Test. In Small-scale Freshwater Toxicity Investigations; Blaise, C.; Férard, J.F., Eds.; Springer: Berlin, 2005; 137–179.
  • Yamane, A.N.; Okada, M.; Sudo, R. The growth inhibition of planktonic algae due to surfactants used in washing agents. Water Res. 1984, 18(9), 1101–1105.
  • Cowan-Ellsberry, C.; Belanger, S.; Dorn, P.; Dyer, S.; McAvoy, D.; Sanderson, H., Versteeg, D.; Ferrer, D.; Stanton, K. Environmental safety of the use of major surfactants classes in North America. Crit. Rev. Environ. Sci. Technol. 2014, 44(17), 1893–1993.
  • Steger-Hartmann, T.; Länge, R.; Schweinfurth, H. Environmental risk assessment for the widely used iodinated X-ray contrast agent iopromide (Ultravist). Ecotoxicol. Environ. Saf. 1999, 42(3), 274–281.
  • Jurado, E.; Fernández-Serrano, M.; Ríos, F.; Lechuga, M. Aerobic biodegradation of surfactants. In Agricultural and biological sciences, Biodegradation-life of science; Chamy, R., Ed.; InTech: Croatia, 2013; 63–79.
  • Singh, K.L.; Kumar, A.; Kumar, A. Short communication: Bacillus cereus capable of degrading SDS shows growth with a variety of detergents. World J. Microbiol. Biotechnol. 1998, 14(5), 777–779.
  • Jurado, E.; Fernández-Serrano, M.; Camacho, F.; Núñez-Olea, J.; Lechuga, M.; Luzón, G. Development and application of kinetic models for the primary biodegradation of non-ionic surfactants. Chem. Eng. J. 2009, 150(2–3), 440–446.
  • Hirata, Y.; Ryu, M.; Oda, Y.; Igarashi, K.; Nagatsuka, A.; Furuta, T;, Sugiura, M. Novel characteristics of sophorolipids, yeasts glycolipid biosurfactants, as biodegradable low-foaming surfactants. J. Biosc. Bioeng. 2009, 108(2), 142–146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.