Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 3
1,192
Views
18
CrossRef citations to date
0
Altmetric
ARTICLES

Subcritical water oxidation of 6-aminopenicillanic acid and cloxacillin using H2O2, K2S2O8, and O2

, &
Pages 210-220 | Received 28 Jun 2016, Accepted 19 Sep 2016, Published online: 11 Nov 2016

References

  • Ternes, T.A.; Stumpf, M.; Schuppert, B.; Haberer, K. Simultaneous determination of antiseptics and acidic drugs in sewage and river water. Vom Wasser 1998, 90, 295–309.
  • Zwiener, C.; Frimmel, F.H. Oxidative treatment of pharmaceuticals in water. Water Res. 2000, 34(6), 1881–1885.
  • Oberlé, K.; Capdeville, M.J.; Berthe, T.; Budzinski, H.; Petit, F.; Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: From medical center patients to a receiving environment. Environ. Sci. Technol. 2012, 46, 1859–1868.
  • Sharma, V.K.; Liu, F.; Tolan, S.; Sohn, M.; Kim, H.; Oturan, M.A. Oxidation of b-lactam antibiotics by ferrate (VI). Chem. Eng. J. 2013, 221, 446–451.
  • Rozas, O.; Contreras, D.; Mondaca, M.A.; Pérez-Moya, M.; Mansilla, H.D. Experimental design of Fenton and Photo-Fenton reactions for the treatment of ampicillin solutions. J. Hazard. Mater. 2010, 177, 1025–1030.
  • Fatta-Kassinos, D.; Vasquez, M.I.; Kümmerer, K. Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes—Degradation, elucidation of by products and assessment of their biological potency. Chemosphere 2011, 85, 693–709.
  • Zhang, T.; Li, B. Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Crit. Rev. Environ. Sci. Technol. 2011, 41, 951–998.
  • De Witte, B.; Van Langenhove, H.; Demeestere, K.; Dewulf, J. Advanced oxidation of pharmaceuticals: Chemical analysis and biological assessment of degradation products. Crit. Rev. Environ. Sci. Technol. 2011, 41, 215–242.
  • Barceló, D.; Petrovic, M. Pharmaceuticals and personal care products (PPCPs) in the environment. Anal. Bioanal. Chem. 2007, 387, 1141–1142.
  • Shetti, N.P.; Malode, S.J.; Nandibewoor, S.T. Oxidation of 6-aminopenicillanic acid by an alkaline copper (III) periodate complex in the absence and presence of ruthenium (III) as a homogeneous catalyst. Polyhedron 2011, 30, 1785–1798.
  • Dutta, M.; Baruah, R.; Dutta, N.N. Adsorption of 6-aminopenicillanic acid on activated carbon, Sep. Purif. Technol. 1997, 12, 99–108.
  • Swaminathan, J.; Ramalingam, M.; Sethuraman, V.; Sundaraganesan, N.; Sebastian, S.; Kurt, M. FT-IR, FT-Raman, ab initio and DFT structural and vibrational frequency analysis of 6-aminopenicillanic acid. Spectrochim. Acta, A 2010, 75, 183–190.
  • Diender, M.B.; Straathof, A.J.J.; van der Does, T.; Ras, C.; Heijnen, J.J. Equilibrium modelling of extractive enzymatic hydrolysis of penicillin G with contaminant 6-aminopenicillanic acid crystallization. Biotechnol. Bioeng. 2002, 98, 395–402.
  • Deshpande, A.D.; Baheti, K.G. Degradation of b-lactam antibiotics. Curr. Sci. 2004, 87, 1684–1695.
  • Rbeida, O.; Chiap, P.; Lubda, D.; Boos, K.S.; Crommen, J.; Hubert, P. Development and validation of a fully automated LC method for the determination of cloxacillin in human plasma using anion exchange restricted access material for sample clean-up. J. Pharm. Biomed. Anal. 2005, 36, 961–968.
  • Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176.
  • Elmolla, E.S.; Chaudhuri, M. Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination 2010, 256, 43–47.
  • Yabalak, E.; Gizir, A.M. Subcritical and supercritical fluid extraction of heavy metals from sand and sewage sludge. J. Serb. Chem. Soc. 2013, 78, 1013–1022.
  • Moreno, E.; Reza, J.; Trejo, A. Extraction of polycyclic aromatic hydrocarbons from soil using water under subcritical conditions. Polycycl. Aromat. Compd. 2007, 27, 239–260.
  • Kus, N.S. Organic reactions in subcritical and supercritical water. Tetrahedron 2012, 68, 949–958.
  • Lekar, A.V.; Borisenko, S.N.; Vetrova, E.V.; Borisenko, R.N.; Borisenko, N.I. Mass spectrometry study of non-covalent complexes of bioflavonoids with cyclotriveratrylene synthesized in subcritical water. Am. J. Anal. Chem. 2013, 4, 464–468.
  • Hunter, S.E.; Savage, P.E. Recent advances in acid-and base-catalyzed organic synthesis in high-temperature liquid water. Chem. Eng. Sci. 2004, 59, 4903–4909.
  • Levec, J; Pintar, A. Catalytic wet-air oxidation processes: A review. Catal. Today 2007, 124, 172–184.
  • Klavariotia, M.; Mantzavinos, D.; Kassinos, D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 2009, 35, 402–417.
  • Carriazo, J.G.; Guelou, E.; Barrault, J.; Tatibouet, J.M.; Moreno, S. Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays. Appl. Clay Sci. 2003, 22, 303–308.
  • Caudo, S.; Genovese, C.; Perathoner, S.; Centi, G. Copper-pillared clays (Cu-PILC) for agro-food wastewater purification with H2O2. Microporous Mesoporous Mater. 2008, 107, 46–57.
  • Catrinescu, C.; Teodosiu, C.; Macoveanu, M.; Miehe-Brendle, J.; Le Dred, R. Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Res. 2003, 37, 1154–1160.
  • Gupta, K.C.; Sutar, A.K. Catalytic activity of polymer anchored N, N’-bis (o-hydroxy acetophenone) ethylene diamine Schiff base complexes of Fe(III), Cu(II) and Zn(II) ions in oxidation of phenol. React. Funct. Polym. 2008, 68, 12–26.
  • Liou, R.M.; Chen, S.H. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol. J. Hazard. Mater. 2009, 172, 498–506.
  • Danwittayakul, S.; Jaisai, M.; Dutta, J. Efficient solar photocatalytic degradation of textile wastewater using ZnO/ZTO composites. Appl. Catal. B 2015, 163, 1–8.
  • Gole, J.L.; White, M.G. Nanocatalysis: Selective conversion of ethanol to acetaldehyde using mono-atomically dispersed copper on silica nanospheres. J. Catal. 2001, 204, 249–252.
  • Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandao, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; dos Santos, W.N.L. Box-Behnken design: An alternative for the optimization of analytical methods, Anal. Chim. Acta 2007, 597, 179–186.
  • Rauf, M.A.; Marzouki, N.; Körbahti, B.K. Photolytic decolorization of Rose Bengal by UV/H2O2 and data optimization using response surface method. J. Hazard. Mater. 2008, 159, 602–609.
  • Alam, Z.; Muyibi, S.A.; Toramae, J. Statistical optimization of adsorption processes for removal of 2 4-dichlorophenol by activated carbon derived from oil palm empty fruit bunches. J. Environ. Sci. 2007, 19, 674–677.
  • Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd ed.; John Wiley and Sons: New York, 2002.
  • Montgomery, D.C. Design and Analysis of Experiments, 4th ed.; John Wiley and Sons: New York, 1996.
  • Li, M.; Feng, C.; Zhang, Z.; Chen, R; Xue, Q.; Gao, C.; Sugiura, N. Optimization of process parameters for electrochemical nitrate removal using Box-Behnken design. Electrochim. Acta 2010, 56, 265–270.
  • Kayan, B.; Gözmen, B. Degradation of Acid Red 274 using H2O2 in subcritical water: Application of response surface methodology. J. Hazard. Mater. 2012, 201–202, 100–106.
  • Kumar, A.; Prasad, B.; Mishra, I.M. Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box-Behnken design. J. Hazard. Mater. 2008, 150, 174–182.
  • Zhang, Z.; Zheng, H. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology. J. Hazard. Mater. 2009, 172, 1388–1393.
  • Madalaa, S.; Narayana Reddya, M.V.; Vudagandla, S.; Abburi, K. Modified leaf biomass for Pb(II) removal from aqueous solution: Application of response surface methodology. Ecol. Eng. 2015, 83, 218–226.
  • Moghaddam, S.S.; Moghaddam, M.R.A.; Arami, M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. J. Hazard. Mater. 2010, 175, 651–657.
  • Design-Expert Software, Version 9.0.6.2, Stat-Ease, Minneapolis, MN.
  • Yabalak, E.; Görmez, Ö.; Gözmen, B.A.M. Gizir, The solubility of sebacic acid in subcritical water using the response surface methodology. Int. J. Ind. Chem. 2015, 6, 23–29.
  • Kalderis, D.; Hawthorne, S.B.; Clifford, A.A.; Gidarakos, E.; Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water. J. Hazard. Mater. 2008, 159, 329–334.
  • Daskalaki, V.M.; Timotheatou, E.S.; Katsaounis, A.; Kalderis, D. Degradation of Reactive Red 120 using hydrogen peroxide in subcritical water. Desalination 2011, 274, 200–205.
  • Wang, S.; Guo, Y.; Chen, C.; Zhang, J.; Gong, Y.; Wang, Y. Supercritical water oxidation of landfill leachate. Waste Manage. 2011, 31, 2027–2035.
  • Chenju, L.; Zih-Sin, W; Clifford, J.B. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 2007, 66, 106–113.
  • Waldemer, R.H.; Tratnyek, P.G.; Johnson, R.L.; Nurmi, J.T. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environ. Sci. Technol. 2007, 41, 1010–1015.
  • Zhang, B.T.; Zhang, Y.; Teng, Y.; Fan, M. Sulfate radicals and its Application in decontamination technologies. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1756–1800.
  • Gokulakrishnan, S.; Parakh, P.; Prakash, H.; Degradation of Malachite green by Potassium persulphate, its enhancement by 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane nickel(II) perchlorate complex and removal of antibacterial activity. J. Hazard. Mater. 2012, 213–214, 19–27.
  • Zaman, S.; Zainelabdin, A.; Amin, G.; Nur, O.; Willander, M. Efficient catalytic effect of CuO nanostructures on the degradation of organic dyes. J. Phys. Chem. Solids 2012, 73, 1320–1325.
  • Perathoner, S.; Centi, G. Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams. Top. Catal. 2005, 33, 207–224.
  • Hua, L.; Ma, H.R.; Zhang, L. Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3. Chemosphere 2013, 90, 143–149.
  • Tromans; D. Temperature and pressure dependent solubility of oxygen in water: A thermodynamic analysis. Hydrometallurgy 1998, 48, 327–342.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.