Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 3
1,379
Views
39
CrossRef citations to date
0
Altmetric
ARTICLES

Emerging pollutant treatments in wastewater: Cases of antibiotics and hormones

, , , &
Pages 235-253 | Received 23 May 2016, Accepted 22 Sep 2016, Published online: 30 Nov 2016

References

  • Secondes, M.F.N.; Naddeo, V.; Belgiorno, V.; Ballesteros Jr, F. Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation. J. Hazard. Mater. 2014, 264, 342–349.
  • Burwell, S.M.; Frieden, T.R.; Rothwell, C.J. National Center for Health Statistics, United States, 2014: With Special Feature on Adults Aged 55–64. Centers for Disease Control and Prevention: Hyattsville, MD, 2015; Available at https://stacks.cdc.gov/view/cdc/31044/Share (accessed Dec 2015).
  • Khetan, S.K.; Collins, T.J. Human pharmaceuticals in the aquatic environment: ; A challenge to green chemistry. Chem. Rev. 2007, 107(6), 2319–2364.
  • Canizares, P.; Paz, R.; Lobato, J.; Saez, C.; Rodrigo, M.A. Electrochemical treatment of the effluent of a fine chemical manufacturing plant. J. Hazard. Mater. 2006, 138(1), 173–181.
  • Scialdone, O.; Galia, A.; Guarisco, C.; Randazzo, S.; Filardo, G. Electrochemical incineration of oxalic acid at boron doped diamond anodes: Role of operative parameters. Electrochim. Acta. 2008, 53(5), 2095–2108.
  • Brown, K.D.; Kulis, J.; Thomson, B.; Chapman, T.H.; Mawhinney, D.B. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 2006, 366(2–3), 772–783.
  • Huang, C.H.; Renew, J.E.; Smeby, K.L.; Pinkston, K.; Sedlak, D.L. Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. J. Contemp. Water Res. Educ. 2011, 120(1), 30–40.
  • Kummerer, K. Resistance in the environment. J. Antimicrob. Chemother. 2004, 54(2), 311–320.
  • Bekçi, Z.; Seki, Y.; Yurdakoç, M.K. Equilibrium studies for trimethoprim adsorption on montmorillonite KSF. J. Hazard. Mater. 2006, 133(1–3), 233–242.
  • de Paula, F.C.C.R.; Pietro, A.C.; de Cass, Q.B. Simultaneous quantification of sulfamethoxazole and trimethoprim in whole egg samples by column-switching high-performance liquid chromatography using restricted access media column for on-line sample clean-up. J. Chromatogr. A 2008, 1189(1–2), 221–226.
  • Martín de Vidales, M.J.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Electrolysis of progesterone with conductive-diamond electrodes. J. Chem. Technol. Biotechnol. 2012, 87(8), 1173–1178.
  • Kim, J.C.; Shin, H.C.; Cha, S.W.; Koh, W.S.; Chung, M.K.; Han, S.S. Evaluation of developmental toxicity in rats exposed to the environmental estrogen bisphenol A during pregnancy. Life Sci. 2001, 69(22), 2611–2625.
  • Santos, K.D.; Braga, O.C.; Vieira, I.C.; Spinelli, A. Electroanalytical determination of estriol hormone using a boron-doped diamond electrode. Talanta 2010, 80(5), 1999–2006.
  • Markman, S.; Müller, C.T.; Pascoe, D.; Dawson, A.; Buchanan, K.L. Pollutants affect development in nestling starlings Sturnus vulgaris. J. Appl. Ecol. 2011, 48(2), 391–397.
  • Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641.
  • Sirés, I.; Brillas, E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environ. Int. 2012, 40, 212–229.
  • Sirés, I.; Brillas, E.; Oturan, M.A.; Rodrigo, M.A.; Panizza, M. Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res. 2014, 21(14), 8336–8367.
  • Yang, S.; Hai, F.I.; Nghiem, L.D.; Price, W.E.; Roddick, F.; Moreira, M.T.; Magram, S.F. Understanding the factors controlling the removal of trace organic pollutants by white–rot fungi and their lignin modifying enzymes: A critical review. Bioresour. Technol. 2013, 141, 97–108.
  • Homem,V.; Santos, L. Degradation and removal methods of antibiotics from aqueous matrices—A review. J. Environ. Manage. 2011, 92, 2304–2347.
  • Campbell, C.G.; Borglin, S.E.; Green, F.B.; Grayson, A.; Wozei, E.; Stringfellow, W.T. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. Chemosphere 2006, 65(8), 1265–1280.
  • Basile, T.; Petrella, A.; Petrella, M.; Boghetich, G.; Petruzzelli, V.; Colasuonno, S.; Petruzzelli, D. Review of endocrine–disrupting–compound removal technologies in water and wastewater treatment plants: An EU perspective. Ind. Eng. Chem. Res. 2011, 50(14), 8389–8401.
  • Petrovic, M.; Lopez de Alda, M.J.; Diaz-Cruz, S.; Postigo, C.; Radjenovic, J.; Gros, M.; Barcelo, D. Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration. Phil. Trans. R. Soc. A 2009, 367, 3979–4004.
  • Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14(8), 742–750.
  • Pal, A.; Gin, K.Y.H.; Lin, A.Y.C.; Reinhard, M. Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Sci. Total Environ. 2010, 408(24), 6062–6069.
  • Carballa, M.; Omil, F.; Lema, J.M. Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage. Chemosphere 2008, 72(8), 1118–1123.
  • Grill, M.F.; Maganti, R.K. Neurotoxic effects associated with antibiotic use: Management considerations. Br. J. Clin. Pharmacol. 2011, 72(3), 381–393.
  • Chen, H.; Rao, H.; He, P.; Qiao, Y.; Wang, F.; Liu, H.; Cai, M.; Yao, J. Potential toxicity of amphenicol antibiotic: Binding of chloramphenicol to human serum albumin. Environ. Sci. Pollut. Res. Int. 2014, 21(19), 11340–11348.
  • Turani, M.; Banfalvi, G.; Peter, A.; Kukoricza, K.; Kiraly, G.; Talas, L.; Tanczos, B.; Dezso, B.; Nagy, G.; Kemeny-Beke, A. Antibiotics delay in vitro human stem cell regrowth. Toxicol In Vitro, 2015, 29(2), 370–379.
  • González-Pleiter, M.; Gonzalo, S.; Rodea-Palomares, I.; Leganés, F.; Rosal, R.; Boltes, K.; Marco, E.; Fernández-Piñas, F. Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Res. 2013, 47(6), 2050–2064.
  • Zhang, F.; Qin, W.; Zhang, J.P.; Hu, C.Q. Antibiotic toxicity and absorption in zebrafish using liquid chromatography–tandem mass spectrometry. Plos One 2015, 10(5), 1–13.
  • Jeffrey, A.M.; Shao, L.; Brendler-Schwaab, S.Y.; Schlüter, G.; Williams, G.M. Photochemical mutagenicity of phototoxic and photochemically carcinogenic fluoroquinolones in comparison with the photostable moxifloxacin. Arch. Toxicol. 2000, 74(9), 555–559.
  • Zhang, Y.; Cai, X.; Lang, X.; Qiao, X.; Li, X.; Chen, J. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture. Environ. Pollut. 2012, 166, 48–56.
  • Zhou, Y.; Xu, Y.B.; Xu, J.X.; Zhang, X.H.; Xu, S.H.; Du, Q.P. Combined toxic effects of heavy metals and antibiotics on a pseudomonas fluorescens strain ZY2 isolated from swine wastewater. Int. J. Mol. Sci. 2015, 16(2), 2839–2850.
  • Pedrouzo, M.; Borrull, F.; Pocurull, E.; Marcé, R.M. Presence of pharmaceuticals and hormones in waters from sewage treatment plants. Water, Air, Soil Pollut. 2011, 217(1–4), 267–281.
  • Sanderson, H.; Brain, R.A.; Johnson, D.J.; Wilson, C.J.; Solomon, K.R. Toxicity classification and evaluation of four pharmaceuticals classes: Antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology 2004, 203(1–3), 27–40.
  • Li, J.; Wang, H.; Zhang, J.; Zhou, B.; Si, L.; Wei, L.; Li, X. Abnormal secretion of reproductive hormones and antioxidant status involved in quinestrol-induced reproductive toxicity in adult male rat. Tissue Cell. 2014, 46(1), 27–32.
  • Pylkkänen, L.; Jahnukainen, K.; Parvinen, M.; Santti, R. Testicular toxicity and mutagenicity of steroidal and non-steroidal estrogens in the male mouse. Mutat. Res. Genet Tox. 1991, 261(3), 181–191.
  • Li, Y.; Hamilton, K.J.; Lai, A.Y.; Burns, K.A.; Li, L.; Wade, P.A.; Korach, K.S. Diethylstilbestrol (DES)–stimulated hormonal toxicity is mediated by ERα alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, and HDAC2) in the mouse seminal vesicle. Environ. Health Perspect. 2014, 122(3), 262–268.
  • Fatta-Kassinos, D.; Meric, S.; Nikolaou, A. Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Anal. Bioanal. Chem. 2011, 399(1), 251–275.
  • Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75(4), 417–434.
  • Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65(5), 725–759.
  • Lin, A.Y.C.; Yu, T.H.; Lin, C.F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 2008, 74(1), 131–141.
  • Batt, A.L.; Kim, S.; Aga, D.S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 2007, 68(3), 428–435.
  • Gómez, M.J.; Petrović, M.; Fernández-Alba, A.R.; Barceló, D. Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters. J. Chromatogr. A 2006, 1114(2), 224–233.
  • Martínez-Bueno, M.J.; Agüera, A.; Gómez, M.J.; Hernando, M.D.; García-Reyes, J.F.; Fernández-Alba, A.R. Application of liquid chromatography/quadrupole-linear ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Anal. Chem 2007, 79(24), 9372–9384.
  • Tolessa, D. Fate and Transport of Steroid hormones in the Environment. In OpenSIUC (Ed.) University Council on Water Resources, OpenSIUC, Illinois, 2008. Available at http://opensiuc.lib.siu.edu/ucowrconfs_2008/17 (accessed Jan 2016).
  • Ying, G.G.; Kookana, R.S.; Ru, Y.J. Occurrence and fate of hormone steroids in the environment. Environ. Int. 2002, 28(6), 545–551.
  • Torres-Duarte, C.; Vazquez-Duhalt, R. Applications and prospective of peroxidase biocatalysis in the environmental field. In Biocatalysis Based on Heme Peroxidases; Torres, E., Ayala, M., Eds.; Springer: Berlin/Heidelberg, 2010; 179–206.
  • Torres, E.; Bustos-Jaimes, I.; Le Borgne, S. Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl. Catal., B 2003, 46(1), 1–15.
  • Torres, E.; Ayala, M. Biocatalysis Based on Heme Peroxidases; Springer-Verlag: Berlin, Germany, 2010; 388.
  • Kersten, P.J.; Kalyanaraman, B.; Hammel, K.E.; Reinhammar, B.; Kirk, T.K. Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem. J. 1990, 268(2), 475–480.
  • Hong, F.; Jönsson, L.; Lundquist, K.; Wei, Y. Oxidation capacity of laccases and peroxidases as reflected in experiments with methoxy-substituted benzyl alcohols. Appl. Biochem. Biotechnol. 2006, 129(1–3), 303–319.
  • Ayala, M.; Robledo, N.R.; Lopez-Munguia, A.; Vazquez-Duhalt, R. Substrate Specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel. Environ. Sci. Technol. 2000, 34(13), 2804–2809.
  • Bogan, B.W.; Lamar, R.T. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 1995, 61(7), 2631–2635.
  • Bogan, B.W.; Lamar, R.T. Polycyclic aromatic hydrocarbons-degrading capabilities of Phanerochaete laevis HHB–1625 and its extracellular ligninolytic enzymes. Appl. Environ. Microbiol. 1996, 62(5), 1597–1603.
  • Hammel, K.E.; Kalyanaram, B.; Kirk, T.K. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]–dioxins by P hanerochaete chrysosporium ligninase. J. Biol. Chem. 1986, 261(36), 16948–16952.
  • Wang, Y.; Vazquez-Duhalt, R.; Pickard, M.A. Manganese–lignin peroxidase hybrid from Bjerkandera adusta oxidizes polyaromatic hydrocarbons more actively in the absence of manganese. Can. J. Microbiol. 2003, 49(11), 675–682.
  • Cavalieri, E.; Rogan, E. Role of radical cations in aromatic hydrocarbon carcinogenesis. Environ. Health Perspect. 1985, 64, 69–84.
  • Battistuzzi, G.; Bellei, M.; Leonardi, A.; Pierattelli, R.; De Candia, A.; Vila, A.; Sola, M. Reduction thermodynamics of the T1 Cu site in plant and fungal laccases. J. Biol. Inorg. Chem. 2005, 10(8), 867–873.
  • Messerschmidt, A.; Huber, R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin Modelling and structural relationships. Eur. J. Biochem. 1990, 187(2), 341–352.
  • Xu, F. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J. Biol. Chem. 1997, 272(2), 924–928.
  • McGuirl, M.A.; Dooley, D.M. Copper-containing oxidases. Curr. Opin. Chem. Biol. 1999, 3(2), 138–144.
  • Xu, F. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: Correlation between activity and redox potentials as well as halide inhibition. Biochemistry 1996, 35, 7608–7614.
  • Inoue, Y.; Hata, T.; Kawai, S.; Okamura, H.; Nishida, T. Elimination and detoxification of triclosan by manganese peroxidase from white rot fungus. J. Hazard. Mater. 2010, 180(1–3), 764–767.
  • Murugesan, K.; Chang, Y.Y.; Kim, Y.M.; Jeon, J.R.; Kim, E.J.; Chang, Y.S. Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Res. 2010, 44(1), 298–308.
  • Eibes, G.; Debernardi, G.; Feijoo, G.; Moreira, M.T. Lema, J. Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation 2011, 22(3), 539–550.
  • Weng, S.S.; Ku, K.L.; Lai, H.T. The implication of mediators for enhancement of laccase oxidation of sulfonamide antibiotics. Bioresour. Technol. 2012, 113, 259–264.
  • Schwarz, J.; Aust, M.O.; Thiele-Bruhn, S. Metabolites from fungal laccase-catalysed transformation of sulfonamides. Chemosphere 2010, 81(11), 1469–1476.
  • Touahar, I.E.; Haroune, L.; Ba, S.; Bellenger, J.P.; Cabana, H. Characterization of combined cross-linked enzyme aggregates from laccase, versatile peroxidase and glucose oxidase, and their utilization for the elimination of pharmaceuticals. Sci. Total Environ. 2014, 481, 90–99.
  • Wen, X.; Jia, Y.; Li, J. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium. J. Hazard. Mater. 2010, 177(1–3), 924–928.
  • Gasser, C.; Ammann, E.; Shahgaldian, P.; Corvini, P.X. Laccases to take on the challenge of emerging organic contaminants in wastewater. Appl. Microbiol. Biotechnol. 2014, 98(24), 9931–9952.
  • Suzuki, K.; Hirai, H.; Murata, H.; Nishida, T. Removal of estrogenic activities of 17β-estradiol and ethinylestradiol by ligninolytic enzymes from white rot fungi. Water Res. 2003, 37(8), 1972–1975.
  • Auriol, M.; Filali-Meknassi, Y.; Adams, C.D.; Tyagi, R.D.; Noguerol, T.N.; Piña, B. Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: Efficiency of horseradish peroxidase and laccase from Trametes versicolor. Chemosphere 2008, 70(3), 445–452.
  • Taboada-Puig, R.; Eibes, G.; Lloret, L.; Lú-Chau, T.A.; Feijoo, G.; Moreira, M.T.; Lema, J.M. Fostering the action of versatile peroxidase as a highly efficient biocatalyst for the removal of endocrine disrupting compounds. New Biotechnol. 2015, 13(1), 187–195.
  • Mao, L.; Lu, J.; Gao, S. Huang, Q. Transformation of 17ß-estradiol mediated by lignin peroxidase: The role of veratryl alcohol. Arch. Environ. Contam. Toxicol. 2010, 59(1), 13–19.
  • Salcedo, K.; Torres-Ramírez, E.; Haces, I.; Ayala, M. Halogenation of β-estradiol by a rationally designed mesoporous biocatalyst based on chloroperoxidase. Biocatalysis 2015, 1(1), 33–43.
  • Torres-Duarte, C.; Viana, M.; Vazquez-Duhalt, R. Laccase-mediated transformations of endocrine disrupting chemicals abolish binding affinities to estrogen receptors and their estrogenic activity in zebrafish. Appl. Biochem. Biotechnol. 2012, 168(4), 864–876.
  • Glaze, W.H.; Kang, J.W.; Chapin, D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Sci. Eng. 1987, 9(4), 335–352.
  • Nyer, E.K.; Vance, D. Hydrogen peroxide treament: The good, the bad, the ugly. Ground Water Monit. R. 1999, 19(3), 54–57.
  • Munter, R. Advanced oxidation processes-current status and prospects. Proc. Estonian Acad. Sci. 2001, 50(2), 59–80.
  • Palit, S. A brief insight into advanced oxidation processes for wastewater treatment: A keen and farsighted short overview. Universal J. Environ. Res. Technol. 2012, 2(3), 106–109.
  • Feng, L.; van Hullebusch, E.D.; Rodrigo, M.A.; Esposito, G.; Oturan, M.A. Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem. Eng. J. 2013, 228, 944–964.
  • Antonopoulou, M.; Evgenidou, E.; Lambropoulou, D.; Konstantinou, I. A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media. Water Res. 2014, 53, 215–234.
  • Umar, M.; Aziz, H.A. Photocatalytic degradation of organic pollutants in water. In Organic Pollutants–Monitoring, Risk and Treatment; Rashed, N.M., Eds.; Intech: Croatia, 2013.
  • Castellote, M.; Bengtsson, N. Principles of TiO2 photocatalysis. In Application of Titanium Dioxide Photocatalysis to Construction Materials; Ohama, Y., Van Gemert, D., Eds.; Springer: New York, 2011.
  • Nosaka, Y.; Nosaka, A.Y. Identification and roles of the active species generated on various photocatalysts. In Photocatalysis and Water Purification: From Fundamentals to Recent Applications; Pichat, P., Ed.; Wiley-VCH: Weinheim, Germany, 2013; 3–24.
  • Chou, H.L.; Hwang, B.J.; Sun, C.L. Catalysis in fuel cells and hydrogen production. In New and Future Developments in Catalysis; Suib, S.L., Ed.; Elsevier: Amsterdam, 2013; 217–270.
  • Colón-Ibáñez, G.; Belver-Coldeira, C.; Fernández-García, M. Nanostructured oxides in photo-catalysis. In Synthesis, Properties, and Applications of Oxide Nanomaterials; Rodriguez, J.A., Fernández-García, M., Eds.; John Wiley & Sons: Hoboken, NJ, 2007.
  • Wu, D.; Lu, G.; Zhang, R.; Lin, Q.; Yan, Z.; Liu, J.; Li, Y. Enhanced hydroxyl radical generation in the combined ozonation and electrolysis process using carbon nanotubes containing gas diffusion cathode. Environ. Sci. Pollut. Res. 2015, 1–9.
  • Zhu, X.D.; Wang, Y.J.; Sun, R.J.; Zhou, D.M. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 2013, 92(8), 925–932.
  • Pugazhenthiran, N.; Murugesan, S.; Sathishkumar, P.; Anandan, S. Photocatalytic degradation of ceftiofur sodium in the presence of gold nanoparticles loaded TiO2 under UV-visible light. Chem. Eng. J. 2014, 241, 401–409.
  • Chen, Q.; Liu, H.; Xin, Y.; Cheng, X. TiO2 nanobelts:Effect of calcination temperature on optical, photoelectrochemical and photocatalytic properties. Electrochim. Acta 2013, 111, 284–291.
  • Gurkan, Y.Y.; Turkten, N.; Hatipoglu, A.; Cinar, Z. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: Prediction of the reaction paths via conceptual DFT. Chem. Eng. J. 2012, 184, 113–124.
  • Leong, K.H.; Liu, S.L.; Sim, L.C.; Saravanan, P.; Jang, M.; Ibrahim, S. Surface reconstruction of titania with g–C3N4 and Ag for promoting efficient electrons migration and enhanced visible light photocatalysis. Appl. Surf. Sci. 2015, 358, Part A 370–376.
  • Chun, S.Y.; Chung, W.J.; Kim, S.S.; Kim, J.T.; Chang, S.W. Optimization of the TiO2/Ge composition by the response surface method of photocatalytic degradation under ultraviolet-A irradiation and the toxicity reduction of amoxicillin. J. Ind. Eng. Chem. 2015, 27, 291–296.
  • Pouretedal, H.R.; Afshari, B. Preparation and characterization of Zr and Sn doped TiO2 nanocomposite and photocatalytic activity in degradation of tetracycline. Desalin. Water Treat. 2016, 57, 10941–10947.
  • Xiao, X.; Hu, R.; Liu, C.; Xing, C.; Zuo, X.; Nan, J.; Wang, L. Facile microwave synthesis of novel hierarchical Bi24O31Br10 nanoflakes with excellent visible light photocatalytic performance for the degradation of tetracycline hydrochloride. Chem. Eng. J. 2013, 225, 790–797.
  • Di, J.; Xia, J.; Ji, M.; Li, H.; Xu, H.; Li, H.; Chen, R. The synergistic role of carbon quantum dots for the improved photocatalytic performance of Bi2MoO6. Nanoscale. 2015, 7(26), 11433–11443.
  • Feng, Y.; Wang, C.; Liu, J.; Zhang, Z. Electrochemical degradation of 17-alpha-ethinylestradiol (EE2) and estrogenic activity changes. J. Environ. Monit. 2010, 12(2), 404–408.
  • Luo, B.; Xu, D.; Li, D.; Wu, G.; Wu, M.; Shi, W.; Chen, M. Fabrication of a Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. Appl. Mater. Interf. 2015, 7(31), 17061–17069.
  • Wang, H.; Ye, Z.; Liu, C.; Li, J.; Zhou, M.; Guan, Q.; Lv, P.; Huo, P.; Yan, Y. Visible light driven Ag/Ag3PO4/AC photocatalyst with highly enhanced photodegradation of tetracycline antibiotics. Appl. Surf. Sci. 2015, 353, 391–399.
  • Wang, H.; Li, J.; Zhou, M.; Guan, Q.; Lu, Z.; Huo, P.; Yan, Y. Preparation and characterization of Ag2O/SWNTs photocatalysts and its photodegradation on tetracycline. J. Ind. Eng. Chem. 2015, 30, 64–70.
  • Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 2013, 93(7), 1268–1287.
  • Nosrati, R.; Olad, A.; Maramifar, R. Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation. Environ. Sci. Pollut. Res. Int. 2012, 19(6), 2291–2299.
  • Khan, A.; Mir, N.A.; Haque, M.M.; Muneer, M. Photocatalysed mineralization of three selected antibacterial drugs, kanamycin acid sulfate, ampicillin and pyrazinamide in aqueous suspensions of TiO2/H2O2. Mat. Focus 2013, 2(5), 335–341.
  • Ahmed, O.; Pons, M.N.; Lachheb, H.; Houas, A.; Zahraa, O. Degradation of sulfamethoxazole by photocatalysis using supported TiO2. Sustain. Environ. Res. 2014, 24(5), 381–387.
  • Rioja, N.; Benguria, P.; Peñas, F.J.; Zorita, S. Competitive removal of pharmaceuticals from environmental waters by adsorption and photocatalytic degradation. Environ. Sci. Pollut. Res. 2014, 21(19), 11168–11177.
  • Dias, I.N.; Souza, B.S.; Pereira, J.H.O.S.; Moreira, F.C.; Dezotti, M.; Boaventura, R.A.R.; Vilar, V.J.P. Enhancement of the photo-Fenton reaction at near neutral pH through the use of ferrioxalate complexes: A case study on trimethoprim and sulfamethoxazole antibiotics removal from aqueous solutions. Chem. Eng. J. 2014, 247 302–313.
  • Cai, Q.; Hu, J. Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: Decomposition pathways, residual antibacterial activity and toxicity. J. Hazard. Mater, 2016, in press. doi: 10.1016/j.jhazmat.2016.06.006
  • Colina-Márquez, J.; Machuca-Martínez, F.; Li Puma, G. Modeling the photocatalytic mineralization in water of commercial formulation of estrogens 17-Î2; estradiol (E2) and nomegestrol acetate in contraceptive pills in a solar powered compound parabolic collector. Molecules 2015, 20(7), 13354–13373.
  • Miranda-García, N.; Suárez, S.; Sánchez, B.; Coronado, J.M.; Malato, S.; Maldonado, M.I. Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Appl. Catal., B 2011, 103(3–4), 294–301.
  • Ahern, J.C.; Fairchild, R.; Thomas, J.S.; Carr, J.; Patterson, H.H. Characterization of BiOX compounds as photocatalysts for the degradation of pharmaceuticals in water. Appl. Catal., B 2015, 179, 229–238.
  • Wu, W.; Huang, Z.H.; Lim, T.T. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Appl. Catal., A 2014, 480 58–78.
  • Vidales, M.J.M.d.; Barba, S.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Coupling ultraviolet light and ultrasound irradiation with conductive-diamond electrochemical oxidation for the removal of progesterone. Electrochim. Acta 2014, 140, 20–26.
  • Marselli, B.; Garcia-Gomez, J.; Michaud, P.A.; Rodrigo, M.A.; Comninellis, C. Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J. Electrochem. Soc. 2003, 150(3), D79–D83.
  • Padilla-Robles, B.G.; Alonso, A.; Martínez-Delgadillo, S.A.; González-Brambila, M.; Jaúregui-Haza, U.J.; Ramírez-Muñoz, J. Electrochemical degradation of amoxicillin in aqueous media. Chem. Eng. Process. Process Intensif. 2015, 94, 93–98.
  • Panizza, M.; Cerisola, G. Application of diamond electrodes to electrochemical processes. Electrochim. Acta 2005, 51(2), 191–199.
  • González, T.; Domínguez, J.R.; Palo, P.; Sánchez-Martín, J.; Cuerda-Correa, E.M. Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution. Desalination 2011, 280(1–3), 197–202.
  • Matamoros, V.; Hijosa, M.; Bayona, J.M. Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen. Chemosphere 2009, 75(2), 200–205.
  • Chen, T.S.; Huang, K.L. Effect of operating parameters on electrochemical degradation of estriol (E3). Int. J. Electrochem. Sci., 2013, 8, 6343–6353.
  • Vieira, K.M.; Nascentes, C.; Motheo, A.J.; Augusti, R. Electrochemical oxidation of ethinylestradiol on a commercial Ti/Ru0.3 Ti0.7O2 DSA electrode. Environ. Chem. 2013, 2013, 1–7.
  • Martinez-Huitle, C.A.; Ferro, S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 2006, 35(12), 1324–1340.
  • Eleotério, I.C.; Forti, J.C.; de Andrade, A.R. Electrochemical treatment of wastewater of veterinary industry containing antibiotics. Electrocatalysis 2013, 4(4), 283–289.
  • Dirany, A.; Sires, I.; Oturan, N.; Oturan, M.A. Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere 2010, 81(5), 594–602.
  • Antonin, V.S.; Santos, M.C.; Garcia-Segura, S.; Brillas, E. Electrochemical incineration of the antibiotic ciprofloxacin in sulfate medium and synthetic urine matrix. Water Res. 2015, 83, 31–41.
  • Liu, P.; Zhang, H.; Feng, Y.; Shen, C.; Yang, F. Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater. J. Hazard. Mater. 2015, 296, 248–255.
  • Moreira, F.C.; Garcia-Segura, S.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon–PTFE air-diffusion cathode and a boron-doped diamond or platinum anode. Appl. Catal., B 2014, 160–161, 492–505.
  • Zaviska, F.; Drogui, P.; Blais, J.; Mercier, G. De La Rochebrochard d'Auzay, S. Electrochemical oxidation of chlortetracycline using Ti/IrO2 and Ti/PbO2 anode electrodes: Application of experimental design methodology. J. Environ. Eng. 2013, 139(6), 810–821.
  • Kong, D.; Liang, B.; Yun, H.; Cheng, H.; Ma, J.; Cui, M.; Wang, A.; Ren, N. Cathodic degradation of antibiotics: Characterization and pathway analysis. Water Res. 2015, 72, 281–292.
  • Menapace, H.M.; Diaz, N.; Weiss, S. Electrochemical treatment of pharmaceutical wastewater by combining anodic oxidation with ozonation. J. Environ. Sci. Health, Part A 2008, 43(8), 961–968.
  • Reis, R.M.; Baio, J.A.F.; Migliorini, F.L.; Rocha, R.d.S.; Baldan, M.R.; Ferreira, N.G.; Lanza, M.R.d.V. Degradation of dipyrone in an electrochemical flow-by reactor using anodes of boron-doped diamond (BDD) supported on titanium. J. Electroanal. Chem. 2013, 690, 89–95.
  • Brocenschi, R.F.; Rocha-Filho, R.C.; Bocchi, N.; Biaggio, S.R. Electrochemical degradation of estrone using a boron-doped diamond anode in a filter-press reactor. Electrochim. Acta. 2016, 197, 186–193.
  • Yoshihara, S.; Murugananthan, M. Decomposition of various endocrine-disrupting chemicals at boron-doped diamond electrode. Electrochim. Acta 2009, 54(7), 2031–2038.
  • Frontistis, Z.; Brebou, C.; Venieri, D.; Mantzavinos, D.; Katsaounis, A. BDD anodic oxidation as tertiary wastewater treatment for the removal of emerging micropollutants, pathogens and organicmatter. J. Chem. Technol. Biotechnol. 2011, 86, 1233–1236.
  • Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239(1–3), 229–246.
  • de Cazes, M.; Abejón, R.; Belleville, M.P.; Sanchez-Marcano, J. Membrane bioprocesses for pharmaceutical micropollutant removal from waters. Membranes 2014, 4(4), 692–729.
  • Ellouze, E.; Tahri, N.; Amar, R.B. Enhancement of textile wastewater treatment process using nanofiltration. Desalination 2012, 286, 16–23.
  • López-Fernández, R.; Martínez, L.; Villaverde, S. Membrane bioreactor for the treatment of pharmaceutical wastewater containing corticosteroids. Desalination 2012, 300, 19–23.
  • Llorens-Blanch, G.; Badia-Fabregat, M.; Lucas, D.; Rodriguez-Mozaz, S.; Barceló, D.; Pennanen, T.; Caminal, G.; Blánquez, P. Degradation of pharmaceuticals from membrane biological reactor sludge with Trametes versicolor. Environ. Sci.: Processes Impacts 2015, 17(2), 429–440.
  • Sipma, J.; Osuna, B.; Collado, N.; Monclús, H.; Ferrero, G.; Comas, J.; Rodriguez-Roda, I. Comparison of removal of pharmaceuticals in MBR and activated sludge systems. Desalination 2010, 250(2), 653–659.
  • Prieto-Rodriguez, L.; Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Puma, G.L.; Malato, S. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. J. Hazard. Mater. 2012, 211–212, 131–137.
  • Bueno, M.J.M.; Gomez, M.J.; Herrera, S.; Hernando, M.D.; Agüera, A.; Fernández-Alba, A.R. Occurrence and persistence of organic emerging contaminants and priority pollutants in five sewage treatment plants of Spain: Two years pilot survey monitoring. Environ. Pollut. 2012, 164, 267–273.
  • Loos, R.; Carvalho, R.; António, D.C.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini, B.; Ghiani, M.; Lettieri, T.; Blaha, L.; Jarosova, B.; Voorspoels, S.; Servaes, K.; Haglund, P.; Fick, J.; Lindberg, R.H.; Schwesig, D.; Gawlik, B.M. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013, 47(17), 6475–6487.
  • Verlicchi, P.; Galletti, A.; Petrovic, M.; Barceló, D. Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J. Hydrol. 2010, 389(3–4), 416–428.
  • Stoquart, C.; Servais, P.; Bérubé, P.R.; Barbeau, B. Hybrid membrane processes using activated carbon treatment for drinking water: A review. J. Membr. Sci. 2012, 411–412, 1–12.
  • Sahar, E.; Messalem, R.; Cikurel, H.; Aharoni, A.; Brenner, A.; Godehardt, M.; Jekel, M.; Ernst, M. Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR). Water Res. 2011, 45(16), 4827–4836.
  • Sahar, E.; David, I.; Gelman, Y.; Chikurel, H.; Aharoni, A.; Messalem, R.; Brenner, A. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 2011, 273(1), 142–147.
  • Sui, Q.; Huang, J.; Deng, S.; Yu, G.; Fan, Q. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res. 2010, 44(2), 417–426.
  • Priya, V.; Philip, L. Membrane bioreactor for the treatment of voc laden pharmaceutical wastewater: Effect of biological treatment systems on membrane performance. J. Water Process Eng. 2015, 7, 61–73.
  • Santos, A.; Ma, W.; Judd, S.J. Membrane bioreactors: Two decades of research and implementation. Desalination 2011, 273(1), 148–154.
  • Zaviska, F.; Drogui, P.; Grasmick, A.; Azais, A.; Héran, M. Nanofiltration membrane bioreactor for removing pharmaceutical compounds. J. Membr. Sci. 2013, 429, 121–129.
  • Clouzot, L.; Doumenq, P.; Vanloot, P.; Roche, N.; Marrot, B. Membrane bioreactors for 17α-ethinylestradiol removal. J. Membr. Sci. 2010, 362(1–2), 81–85.
  • Wijekoon, K.C.; Hai, F.I.; Kang, J.; Price, W.E.; Guo, W.; Ngo, H.H.; Nghiem, L.D. The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment. Bioresour. Technol. 2013, 144, 247–254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.