Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 4
235
Views
5
CrossRef citations to date
0
Altmetric
ARTICLES

Experimental and modeling analyses for interactions between graphene oxide and quartz sand

, , &
Pages 368-377 | Received 10 Aug 2016, Accepted 20 Oct 2016, Published online: 14 Dec 2016

References

  • Volder, M.F.L.D.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.
  • Mauter, M.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol. 2008, 42, 843–5859.
  • Petersen, E.J.; Zhang, L.; Mattison, N.T.; O'Carroll, D.M.; Whelton, A.J.; Uddin, N.; Nguyen, T.; Huang, Q.; Henry, T.B.; Holbrook, R.D.; Chen, K.L. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ. Sci. Technol. 2011, 45, 9837–9856.
  • Klaine, S.J.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851.
  • Hennebert, P.; Avellan, A. Experimental evidence of colloids and nanoparticles presence from 25 waste leachates. Waste Manage. 2013, 33, 1870–1881.
  • Kang, J.K.; Yi, I.G.; Park, J.A.; Kim, S.B.; Kim, H.; Han, Y.; Kim, P.J.; Eom, I.C.; Jo, E. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses. J. Contam. Hydrol. 2015, 177–178, 194–205.
  • Kasel, D.; Bradford, S.A.; Šimůnek, J.; Putz, T.; Vereecken, H.; Klumpp, E. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils. Environ. Pollut. 2013, 180, 152–158.
  • Chowdhury, I.; Duch, M.C.; Gits, C.C.; Hersam, M.C.; Walker, S.L. Impact of synthesis methods on the transport of single walled carbon nanotubes in the aquatic environment. Environ. Sci. Technol. 2012, 46, 11752–11760.
  • Tian, Y.; Gao, B.; Ziegler, K.J. High mobility of SDBS-dispersed single-walled carbon nanotubes in saturated and unsaturated porous media. J. Hazard. Mater. 2011, 186, 1766–772.
  • Jaisi, D.P.; Elimelech, M. Single-walled carbon nanotubes exhibit limited transport in soil columns. Environ. Sci. Technol. 2009, 43, 9161–9166.
  • Li, Y.; Wang, Y.; Pennell, K.D.; Abriola, L.M. Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sand under varying flow conditions. Environ. Sci. Technol. 2008, 42, 7174–7180.
  • Polichetti, T.; Miglietta, M.L.; Di Francia, G. Overview on graphene: Properties, fabrication and applications. Chim. Oggi. 2010, 28, 6–9.
  • Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.
  • Konkena, B.; Vasudevan, S. Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements. J. Phys. Chem. Lett. 2012, 3, 867–872.
  • Ahmed, F.; Rodrigues, D.F. Investigation of acute effects of graphene oxide on wastewater microbial community: A case study. J. Hazard. Mater. 2013, 256–257, 33–39.
  • Chen, L.; Hu, P.; Zhang, L.; Huang, S.; Luo, L.; Huang, C. Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Sci. China: Chem. 2012, 55, 2209−2216.
  • Wang, K.; Ruan, J.; Song, H.; Zhang, J.L.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of graphene oxide. Nanoscale Res. Lett. 2011, 6, 1–8.
  • Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971−6980.
  • Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731−5736.
  • Feriancikova, L.; Xu, S. Deposition and remobilization of graphene oxide within saturated sand packs. J. Hazard. Mater. 2012, 235/236, 194–200.
  • Lanphere, J.D.; Luth, C.J.; Walker, S.L. Effects of solution chemistry on the transport of graphene oxide in saturated porous media. Environ. Sci. Technol. 2013, 47, 4255–4261.
  • Liu, L.; Gao, B.; Wu, L.; Morales, V.L.; Yang, L.; Zhou, Z.; Wang, H. Deposition and transport of graphene oxide in saturated and unsaturated porous media. Chem. Eng. J. 2013, 229, 444–449.
  • Liu, L.; Gao, B.; Wu, L.; Yang, L.; Zhou, Z.; Wang, H. Effects of pH and surface metal oxyhydroxides on deposition and transport of carboxyl-functionalized graphene in saturated porous media. J. Nanopart. Res. 2013, 15, 2079–2086.
  • Chowdhury, I.; Duch, M.C.; Mansukhani, N.D.; Hersam, M.C.; Bouchard, D. Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance. Environ. Sci. Technol. 2014, 48, 961−969.
  • Fan, W.; Jiang, X.; Lu, Y.; Huo, M.; Lin, S.; Geng, Z. Effects of surfactants on graphene oxide nanoparticles transport in saturated porous media. J. Environ. Sci. 2015, 35, 12−19.
  • Fan, W.; Jiang, X.H.; Yang, W.; Geng, Z.; Huo, M.X.; Liu, Z.M.; Zhou, H. Transport of graphene oxide in saturated porous media: Effect of cation composition in mixed Na–Ca electrolyte systems. Sci. Total. Environ. 2015, 511, 509–515.
  • He, J.Z.; Li, C.C.; Wang, D.J.; Zhou, D.M. Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media. J. Hazard. Mater. 2015, 300, 467–474.
  • Zhou, D.D.; Jiang, X.H.; Lu, Y.; Fana, W.; Huo, M.X.; Crittenden, J.C. Cotransport of graphene oxide and Cu(II) through saturated porous media. Sci. Total. Environ. 2016, 550, 717–726.
  • Lee, C.G.; Kim, S.B. Removal of arsenic and selenium from aqueous solutions using magnetic iron oxide nanoparticle/multi-walled carbon nanotube adsorbents. Desal. Water Treat. 2016, published online.
  • Mattison, N.T.; O'Carroll, D.M.; Rowe, R.K.; Petersen, E.J. Impact of porous media grain size on the transport of multi-walled carbon nanotubes. Environ. Sci. Technol. 2011, 45, 9765–9775.
  • Choi, N.G.; Park, S.J.; Lee, C.G.; Park, J.A.; Kim, S.B. Influence of surfactants on bacterial adhesion to metal oxide-coated surfaces. Environ. Eng. Res. 2011, 16, 219–225.
  • Kim, S.B.; Park, S.J.; Lee, C.G.; Kim, H.C. Transport and retention of Escherichia coli in a mixture of quartz, Al-coated and Fe-coated sands. Hydrol. Process. 2008, 22, 3856–3863.
  • Hogg, R.; Healy, T.W.; Fuerstenau, D.W. Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 1966, 62, 1638–1651.
  • Gregory, J. Approximate expressions for retarded van der Waals interaction. J. Colloid Interface Sci. 1981, 83, 138–145.
  • van Oss, C.J.; Giese, R.F.; Costanzo, P.M. DLVO and non-DLVO interactions in hectorite. Clay Clay Miner. 1990, 38, 151–159.
  • Loveland, J.P.; Ryan, J.N.; Amy, G.L.; Harvey, R.W. The reversibility of virus attachment to mineral surfaces. Colloids Surf. A 1996, 107, 205–221.
  • Malmberg, C.G.; Maryott, A.A. Dielectric constant of water from 0°C to 100°C. J. Res. Nation. Bure. Stand. 1956, 56, 1–8.
  • Wheast, R.C. Handbook of Chemistry and Physics, 64th ed.; CRC Press: Florida, 1984.
  • Shen, C.; Lazouskaya, V.; Zhang, H.; Li, B.; Jin, Y.; Huang, Y. Influence of surface chemical heterogeneity on attachment and detachment of microparticles. Colloids Surf. A. 2013, 433, 14–29.
  • Shen, C.; Jin, Y.; Li, B.; Zheng, W.; Huang, Y. Facilitated attachment of nanoparticles at primary minima by nanoscale roughness is susceptible to hydrodynamic drag under unfavorable chemical conditions. Sci. Total. Environ. 2014, 466, 1094–1102.
  • Hahn, M.W.; O'Melia, C.R. Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: Some concepts and applications. Environ. Sci. Technol. 2004, 38, 210–220.
  • Shen, C.; Li, B.; Huang, Y.; Jin, Y. Kinetics of coupled primary- and secondary-minimum deposition of colloids under unfavorable chemical conditions. Environ. Sci. Technol. 2007, 41, 6976–6982.
  • Zhang, L.; Hou, L.; Wang, L.; Kan, A.T.; Chen, W.; Tomson, M.B. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: Controlling factors and modeling. Environ. Sci. Technol. 2012, 46, 7230–7238.
  • Toride, N.; Leij, F.J.; Genuchten, M.T. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Filed Tracer Experiments, Version 2.0. US Salinity Laboratory: California, 1955.
  • Tufenkji, N.; Elimelech, M. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 2004, 38, 529–536.
  • Lin, D.; Liu, C.R.; Cheng, G.J. Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement. Acta Mater. 2014, 80, 183–193.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.