Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 6
526
Views
29
CrossRef citations to date
0
Altmetric
ARTICLES

Combined ecotoxicity of binary zinc oxide and copper oxide nanoparticles to Scenedesmus obliquus

, , , &
Pages 555-560 | Received 12 Oct 2016, Accepted 22 Dec 2016, Published online: 28 Feb 2017

References

  • Hendren, C.O.; Mesnard, X.; Dröge, J.; Wiesner, M.R. Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ. Sci. Technol. 2011, 45, 2562–2569.
  • Nowack, B.; Bucheli, T.D. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5–22.
  • Klaine, S.J.; Alvarez, P.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851.
  • Lowry, G.V.; Hotze, E.M.; Bernhardt, E.S.; Dionysiou, D.D.; Pedersen, J.A.; Wiesner, M.R.; Xing, B. Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: an introduction to the special series. J. Environ. Qual. 2010, 39, 1867–1874.
  • Wang, Z.; Chen, J.; Li, X.; Shao, J.; Peijnenburg, W.J. Aquatic toxicity of nanosilver colloids to different trophic organisms: contributions of particles and free silver ion. Environ. Toxicol. Chem. 2012, 31, 2408–2413.
  • Zhang, F.; Wang, Z.; Wang, S.; Fang, H.; Chen, M.; Xu, D.; Tang, L.; Wang, D. Physicochemical properties and ecotoxicological effects of yttrium oxide nanoparticles in aquatic media: role of low molecular weight natural organic acids. Environ. Pollut. 2016, 212, 113–120.
  • Wang, Z.; Fang, H.; Wang, S. Benzoic acid interactions affect aquatic properties and toxicity of copper oxide nanoparticles. Bull. Environ. Contam. Toxicol. 2016, 97, 159–165.
  • Wang, Z.; Gao, Y.; Wang, S.; Fang, H.; Xu, D.; Zhang, F. Impacts of low-molecular-weight organic acids on aquatic behavior of graphene nanoplatelets and their induced algal toxicity and antioxidant capacity. Environ. Sci. Pollut. Res. Int. 2016, 23, 10938–10945.
  • Stanley, J.K.; Laird, J.G.; Kennedy, A.J.; Steevens, J.A. Sublethal effects of multiwalled carbon nanotube exposure in the invertebrate Daphnia magna. Environ. Toxicol. Chem. 2016, 35, 200–204.
  • Silva, B.F.; Andreani, T.; Gavina, A.; Vieira, M.N.; Pereira, C.M.; Rocha-Santos, T.; Pereira, R. Toxicological impact of cadmium-based quantum dots towards aquatic biota: effect of natural sunlight exposure. Aquat. Toxicol. 2016, 176, 197–207.
  • Bruneau, A.; Fortier, M.; Gagne, F.; Gagnon, C.; Turcotte, P.; Tayabali, A.; Davis, T.L.; Auffret, M.; Fournier, M. Size distribution effects of cadmium tellurium quantum dots (CdS/CdTe) immunotoxicity on aquatic organisms. Environ. Sci. Process. Impacts. 2013, 15, 596–607.
  • Zhang, X.; Wang, Z.; Wang, S.; Fang, H.; Zhang, F.; Wang, D.G. Impacts of dissolved organic matter on aqueous behavior of nano/micron-titanium nitride and their induced enzymatic/non-enzymatic antioxidant activities in Scenedesmus obliquus. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2017, 52, 23–29.
  • Altenburger, R.; Walter, H.; Grote, M. What contributes to the combined effect of a complex mixture? Environ. Sci. Technol. 2004, 38, 6353–6362.
  • Sanchís, J.; Olmos, M.; Vincent, P.; Farré, M.; Barceló, D. New insights on the influence of organic co-contaminants on the aquatic toxicology of carbon nanomaterials. Environ. Sci. Technol. 2016, 50, 961–969.
  • Song, M.; Wang, F.; Zeng, L.; Yin, J.; Wang, H.; Jiang, G. Co-exposure of carboxyl-functionalized single-walled carbon nanotubes and 17α-ethinylestradiol in cultured cells: effects on bioactivity and cytotoxicity. Environ. Sci. Technol. 2014, 48, 13978–13984.
  • Tong, T.; Wilke, C.M.; Wu, J.; Binh, C.T.; Kelly, J.J.; Gaillard, J.F.; Gray, K.A. Combined toxicity of nano-ZnO and nano-TiO2: from single- to multinanomaterial systems. Environ. Sci. Technol. 2015, 49, 8113–8123.
  • Kim, K.T.; Klaine, S.J.; Lin, S.; Ke, P.C.; Kim, S.D. Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna. Environ. Toxicol. Chem. 2010, 29, 122–126.
  • Wang, Z.; Wang, S.; Peijnenburg, W.J. Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol: independent action surpasses concentration addition. Chemosphere 2016, 156, 8–13.
  • Backhaus, T.; Arrhenius, A.; Blanck, H. Toxicity of a mixture of dissimilarly acting substances to natural algal communities: predictive power and limitations of independent action and concentration addition. Environ. Sci. Technol. 2004, 38, 6363–6370.
  • Junghans, M.; Backhaus, T.; Faust, M.; Scholze, M.; Grimme, L.H. Application and validation of approaches for the predictive hazard assessment of realistic pesticide mixtures. Aquat. Toxicol. 2006, 76, 93–110.
  • Wang, Z.; Chen, J.; Huang, L.; Wang, Y.; Cai, X.; Qiao, X.; Dong, Y. Integrated fuzzy concentration addition-independent action (IFCA-IA) model outperforms two-stage prediction (TSP) for predicting mixture toxicity. Chemosphere 2009, 74, 735–740.
  • Silva, E.; Cerejeira, M.J. Concentration addition-based approach for aquatic risk assessment of realistic pesticide mixtures in Portuguese river basins. Environ. Sci. Pollut. Res. Int. 2015, 22, 6756–6765.
  • Huang, Y.W.; Wu, C.H.; Aronstam, R.S. Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 2010, 3, 4842–4859.
  • Fan, Z.; Lu, J.G. Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 2005, 5, 1561–1573.
  • Singh, J.; Kaur, G.; Rawat, M. A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. J. Bioelectron. Nanotechnol. 2016, 1, 9.
  • Zhao, J.; Xu, L.; Zhang, T.; Ren, G.; Yang, Z. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 2009, 30, 220–230.
  • Bhuvaneshwari, M.; Iswarya, V.; Archanaa, S.; Madhu, G.M.; Kumar, G.K.; Nagarajan, R.; Chandrasekaran, N.; Mukherjee, A. Cytotoxicity of ZnO NPs towards fresh water algae Scenedesmus obliquus at low exposure concentrations in UV-C, visible and dark conditions. Aquat. Toxicol. 2015, 162, 29–38.
  • Chen, P.; Powell, B.A.; Mortimer, M.; Ke, P.C. Adaptive interactions between zinc oxide nanoparticles and Chlorella sp. Environ. Sci. Technol. 2012, 46, 12178–12185.
  • Wang, Z.; Li, J.; Zhao, J.; Xing, B. Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ. Sci. Technol. 2011, 45, 6032–6040.
  • OECD. Freshwater alga and cyanobacteria, growth inhibition test, Nr. 201; OECD Guidelines for the Testing of Chemicals; OECD, Paris, 2006. Available at http://www.oecd.org (accessed Jul 2016).
  • Quik, J.T.; Lynch, I.; Van Hoecke, K.; Miermans, C.J.; De Schamphelaere, K.A.; Janssen, C.R.; Dawson, K.A.; Stuart, M.A.; Van De Meent, D. Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 2010, 81, 711–715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.