Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 8
198
Views
1
CrossRef citations to date
0
Altmetric
Articles

The ability of consortium wastewater protozoan and bacterial species to remove COD in the presence of nanomaterials under varying pH conditions

, &
Pages 697-709 | Received 24 Jan 2017, Accepted 04 Feb 2017, Published online: 03 Apr 2017

References

  • Petrović, M.; Gonzalez, S.; Barceló, D. Analysis and removal of emerging contaminants in wastewater and drinking water. Trends Anal. Chem. 2003, 10, 685–696.
  • Thomaidis, N.; Asimakopoulos, A.; Bletsou, A. Emerging contaminants: A tutorial mini-review. Global NEST J. 2012, 14, 72–79.
  • Lapworth, D.; Baran, N.; Stuart, M.; Ward, R. Emerging organic contaminants in groundwater: A review of source, fate and occurrence. Environ. Pollut. 2012, 163, 287–303.
  • Anandaraj, M.; Dinesh, R.; Srinivasan, V.; Hamza, S. Nanotechnology in Agriculture: The use of novel materials and environmental issues. Botanica 2011, 59–61, 22–34.
  • Roco, M.C.; Mirkin, C.A.; Hersam, M.C. Nanotechnology research directions for societal needs in 2020: summary of international study. J. Nanopart. Res. 2011, doi 10.1007/s11051-011-0275-5
  • Royal Society & Royal Academy of Engineering. Nanoscience and Nanotechnologies: Opportunities & Uncertainties. Royal Society & Royal Academy of Engineering, London, 2004.
  • Brar, S.K.; Verma, M.; Tyagi, R.D.; Surampalli, R.Y. Engineered nanoparticles in wastewater and wastewater sludge- Evidence and impacts. Waste Manage. 2010, 30, 504–520.
  • Luyts, K.; Napierska, D.; Nemery, B.; Hoet, P.H. How physico-chemical characteristics of nanoparticles cause their toxicity: complex and unresolved interrelations. Environ. Sci. Processes & Impacts. 2013, 15, 23–38.
  • Lombi, E.; Donner, E.; Tavakkoli, E.; Turney, T.W.; Naidu, R.; Miller, B.W.; Scheckel, K.G. Fate of Zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ. Sci. Technol. 2012, 16, 9089–9096.
  • Maurer-Jones, M.A.; Gunsolus, I.L.; Murphy, C.J.; Haynes, C.L. Toxicity of engineered nanoparticles in the environment. Anal. Chem. 2013, 6, 3036–3049.
  • Wagner, M.; Loy, A.; Nogueira, R.; Purkhold, U.; Lee, N.; Daims, H. Microbial community composition and function in wastewater plants. Antonie van Leeuwenhoek. 2002, 81, 665–680.
  • National Science & Technology Council. An assessment of coastal hypoxia and eutrophication in U.S. water. 2003. Available at http://oceanservice.noaa.gov/outreach/pdfs/coastalhypoxia.pdf ( accessed Nov 2016).
  • Akpor, O.; Momba, M.; Okonkwo, J. The effects of pH and temperature on phosphate and nitrite by wastewater protozoa. J. Afri. Biotech. 2008, 13, 2221–2226.
  • Kamika, I.; Momba, M. Comparison the tolerance limit of selected bacterial and protozoan species to nickel in wastewater systems. Sci. Total Environ. 2011, 410–411, 172–181.
  • Kamika, I.; Momba, M. Comparison of the tolerance limits of selcted bacterial and protozoan species to vanadium in wastewater systems. Water Air Soil Pollut. 2012, 223, 2525–2539.
  • Kachieng'a, L.; Momba, M. Biodegradation of fats and oils in domestic watewater by selected protozoan isolates. Water, Air, Soil Pollut. 2015, 226–140, 1–15. doi:10.1007/s11270-015-2405-7
  • Li, Y.; Wu, Y.; Wang, C.; Wang, P. Biosorption of copper, manganese, cadmium, and zinc by Pseudomon as putida isolated from contaminated sediments. Desalin. Water Treat. 2013, 52, 7218–7.
  • Eduok, S.; Martin, B.; Villa, R.; Nocker, A.; Jefferson, B.; Coulon, F. Evaluation of engineered nanoparticle toxic effect on wastewater microorganisms: Current status and challenges. Ecotoxicol. Environ. Saf. 2013, 95, 1–9.
  • Kiser, M.; Ladner, D.; Hristovski, K.; Westerhoff, P. Nanomaterial transformation and association with fresh and freeze-dried wastewater activated sludge: Implications for testing protocol and environmental fate. Environ. Sci. Technol. 2012, 46, 7046–7053.
  • Zheng, X.; Wu, R.; Chen, Y. Effects of ZnO nanoparticles on wastewater biological nitrogen and phosphorus removal. Environ. Sci. Technol. 2011, 45, 2826–2832.
  • Westerhoff, P.; Kiser, M.; Hristovski, K. Nanomaterial removal and transformation during biological wastewater treatment. Environ. Eng. Sci. 2013, 30, 109–117.
  • Liang, Z.; Das, A.; Hu, Z. Bacterial response to a shock load of nanosilver in an activated sludge treatment system. Water Res. 2010, 5432–5438.
  • Arnaout, C.; Gunsch, C. Assessing the effects of silver nanoparticles on biological nutrient removal in bench-scale activated sludge sequencing batch reactors. Environ. Sci. Technol. 2014, 48, 970–976.
  • Yuan, Z.; Li, J.; Cui, L.; Xu, B.; Zhang, H.; Yu, C. Interaction of silver nanoparticles with pure nitrifying bacteria. Chemsphere. 2013, 90, 1404–1411.
  • Oulton, R.; Kohn, T.; Cwierthy, D. Pharmaceutical and personal care products in effluent matrices: A survey of transformation and removal during wastewater treatment and implications for wastewater management. J. Environ. Monit. 2010, 12, 1956–1978.
  • Auffan, M.; Rose, J.; Wiesner, M.; Bottero, J. Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009, 157, 1127–1133.
  • Chaúque, E.; Zvimba, J.; Ngila, J.; Musee, N. Stability studies of commercial ZnO engineered nanoparticles in domestic wastewater. Phys. Chem. Earth. 2013, 67–69, 140–144.
  • Kaegi, R.; Voegelin, A.; Ort, C.; Sinnet, B.; Thalmann, B.; Krismer, J.; Hagendorfer, H.; Elemelu, M.; Mueller, E. Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res. 2013, 47, 3866–3877.
  • Sheng, Z.; Liu, Y. Effects of silver nanoparticles on wasterwater biofilm. Water Res. 2011, 6038–6050.
  • Wang, Y.; Westerhoff, P.; Hristovski, K. Fate and biological effects of silver, titanium dioxide, and C60 (fullerene) nanomaterials during simulated wastewater treatment processes. J. Hazard. Mater. 2012, 201–202, 16–22.
  • Akaighe, N.; Depner, S.; Banerjee, S.; Sohn, M. Transport and deposition of Suwannee River humic acid/natural organic matter formed silver nanoparticles on silica matrices: The influence of solution pH and ionic strength. Chemosphere. 2013, 92, 406–412.
  • APHA. Standard methods for the examination of water and wastewater. 20th ed. American Public Health Association (APHA), Washington DC, 2001.
  • Hansen, S.; Michelson, E.; Kamper, A.; Borling, P.; Stuer-Lauridsen, F.; Baun, A. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicol. 2008, 17, 438–447.
  • Benn, T.; Cavanagh, B. The release of nanosilver from consumer products used in the home. J. Environ. Qual. 2010, 39, 1–8.
  • Klaine, S.J.; Alvarez, P.; Batley, G.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.Y.; McLaunglin, M.J.; Lead, J.R. Nanomaterials in the environment: Behaviour, fate, bioavailabilities and effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851.
  • Li, M.; Pokhrel, S.; Jin, X.; Mädler, L.; Damoiseaux, R.; Hoek, E.M.V. Stability, bioavailability and bacterial toxicity of ZnO and Iron-doped ZnO nanoparticles in aquatic media. Environ. Sci. Technol. 2011, 45, 755–761.
  • Li, M.; Lin, D.; Zhu, L. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity of Escherichia coli. Environ. Pollut. 2013, 173, 97–102.
  • Feng, Q.; Wu, J.; Chen, G.; Cui, F.; Kim, T.; Kim, J. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed Mater. 2000, 52, 662–668.
  • Khan, S.S.; Mukherjee, A.; Chandrasekaran, N. Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species. Colloids Surf B: Biointer. 2011, 87, 129–138.
  • Huang, Z.; Zheng, X.; Yan, D.; Yin, G.; Liao, X.; Kang, Y.; Yao, Y.; Huang, D.; Hao, B. Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir. 2008, 24, 4140–4144.
  • Akpor, O.; Momba, M.; Okonkwo, J. Protozoan biomass relationship to nutrient and COD removal in activated sludge mixed liquor. Biotechnol. J. 2008, 3, 1–5.
  • Asharani, P.; Lianwu, Y.; Gong, Z.; Valiyaveettil, S. Comparison of the toxicity of silver, gold and platinum nanoparticles developing zebrafish embryos. Nanotoxicol. 2011, 5, 43–54.
  • Song, W.; Zhang, J.; Guo, J.; Zhang, J.; Ding, F.; Li, L.; Sun, Z. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol. Lett. 2010, 199, 389–397.
  • Dimkpa, C.O.; Calder, A.; Gajjar, P.; Merugu, S.; Huang, W.; Britt, D.W.; McLean, J.E.; Johnson, W.P.; Anderson, A. Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. J. Hazard. Mater. 2011, 428–435.
  • You, J.; Zhang, Y.; Hu, Z. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf. B: Biointer. 2011, 85, 161–167.
  • Bondarenko, O.; Juganson, K.; Ivask, A.; Mortimer, M.; Kahru, A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 2013, 87, 1181–1200.
  • Musee, N.; Zvimba, J.; Schaefer, L.; Nota, N.; Sikhwivhilu, L.; Thwala, M. Fate and behavior of ZnO- and Ag-engineered nanoparticles and a bacterial viability assessment in a simulated wastewater treatment plant. J. Environ. Sci. Health Part A. 2014, 49, 59–66.
  • Westerhoff, P.; Song, G.; Hristovski, K.; Kiser, A. Occurrence and removal of titanium at full scale wastewater treatment plants: Implications for TiO2 nanomaterials. J. Environ. Monit. 2011, 13, 1195–1203.
  • Limbach, L.; Bereiter, R.; Muller, E.; Krebs, R.; Galli, R.; Stark, W. Removal of oxide nanoparticles in a model wastewater treatment plant: Influence of agglomeration and surfactants on clearing efficiency. Environ. Sci. Technol. 2008, 42, 5828–5833.
  • Vu, B.; Chen, M.; Crawford, R.J.; Ivanova, E.P. Bacterial extracellular polysaccharides involved in biofilms formation. Molecules. 2009, 14, 2535–2554.
  • Hajipour, M.; Fromm, K.; Ashkarran, A.; de Aberasturi, D.; de Larramendi, I.; Rojo, T.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511.
  • Nadell, C.; Xavier, J.; Levin, S.; Foster, K. The evolution of quorum sensing in bacterial biofilms. Plos Biol. 2008, 6, 0171–0179.
  • Becheri, A.; Durr, M.; Nostro, P.; Baglioni, P. Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers. J. Nano. Res. 2008, 10, 679–689.
  • Hong, R.; Pan, T.; Qian, J.; Li, H. Synthesis and surface modification of ZnO nanoparticles. Chem. Eng. J. 2008, 119, 71–81.
  • Raghupathi, K.; Koodali, R.; Manna, A. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Am. Chem. Soc. 2011, 27, 4020–4028.
  • Aruguete, D.; Hochella Jr, M. Bacteria–nanoparticle interactions and their environmental implications. Environ. Chem. 2010, 7, 3–9.
  • Sheng, G.; Yu, H.; Li, X. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnol. Adv. 2010, 28, 882–894.
  • Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Inter. Sci. 2004, 275, 177–182.
  • Marambio-Jones, C.; Hoek, E. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nano. Res. 2010, 12, 1531–1551.
  • Delay, M.; Dolt, T.; Woellhaf, A.; Sembritzki, R.; Frimmel, F. Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength. J. Chromatogr. A. 2011, 1218, 4206–4212.
  • Thwala, M.; Musee, N.; Sikhwivhilu, L.; Wepener, V. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ. Sci.: Processes & Impacts. 2013, 15, 1830–1843.
  • Akbari, B.; Tavandashti, M.; Zandrahimi, M. Particle size characterization of nanoparticles - a practical approach. Iran. J. Mater. Sci. Eng. 2011, 8, 48–56.
  • Jiang, J.; Oberdorster, G.; Biswas, P. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nano. Res. 2009, 11, 77–89.
  • Jiang, W.; Mashayekhi, H.; Xing, B. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 2009, 157, 1619–1625.
  • Vonk, A.; Struijs, J.; van de Meent, D.; Peijnenburg, W. Nanomaterials in the Aquatic Environment: Toxicity, Exposure and Risk Assessment. Laboratory for Environmental Risk Assessment, The Netherlands Natural Institute for Public Health and the Environment: Utrecht, Netherlands, 2009.
  • McLaughlin, J.; Bonzongo, J. Effects of natural water chemistry on nanosilver behaviour and toxicity of Ceriodaphnia dubia and Pseudokirchneriella subcapitata. Environ. Toxicol Chem. 2012, 31, 168–175.
  • Tso, C.; Zhung, C.; Shin, Y.; Tseng, Y.; Wu, S.; Doong, R. Stability of metal oxide nanoparticles in aqueous solutions. Water Sci. Technol. 2010, 61, 127–133.
  • Akpor, O. The role of protozoa in the removal of phosphorus and nitrogen in activated sludge systems. D.Tech. Thesis, Tshwane University of Technology, Pretoria, 2009.
  • Lakshmi, B.K.M.; Sri, P.A.R.; Devi, K.A., & Hemalatha, K.P.J. Media optimization of protease production by Bacillus licheniformis and partial characterization of alkaline protease. Inter. J. Micro. App. Sci. 2014, 3(5), 650–659.
  • Nejad, Z.G., Yaghmaei, S., Hosseini, R.H. Production of extracellular protease and determination of optimal condition by Bacillus licheniformis BBRC 100053. IJE Trans. B: Appl. 2009, 22, 221–227.
  • Waalewijn-Kool, P.; Ortiz, M.; Lofts, S.; van Gestel, C. The effect of pH on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil. Environ. Toxicol. Chem. 2013, 32, 2349–2355.
  • Labille, J.; Brant, J. Stability of nanoparticles in water. Nanomedicine, special focus issue: Environ. Toxic. Nano. 2010, 5, 985–998.
  • Fabrega, J.; Fawcett, S.; Renshaw, J.; Lead, J. Silver nanoparticles impact on bacterial growth: effect of pH, concentration, and organic matter. Environ. Sci. Technol. 2009, 43, 7285–7290.
  • Fabrega, J.; Renshaw, J.; Lead, J. Interactions of silver nanoparticles with Pseudomonas putida biofilms. Environ. Sci. Technol. 2009, 9004–9009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.