Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 8
486
Views
17
CrossRef citations to date
0
Altmetric
Articles

Enhanced photo-catalytic activity of ordered mesoporous indium oxide nanocrystals in the conversion of CO2 into methanol

, , , &
Pages 785-793 | Received 26 Nov 2016, Accepted 18 Feb 2017, Published online: 03 Apr 2017

References

  • Hansen, J.; Johnson, D.; Lacis, A.; Lebedeff, S.; Lee, P.; Rind, D.; Russell, G. Climate impact of increasing atmospheric carbon dioxide. Science 1981, 213, 957–960.
  • Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, 1–29.
  • Wang, W.N. Comparison of CO2 photoreduction systems: A review. Aerosol. Air Qual. Res. 2014, 14, 533–549.
  • Chueh, W.C.; Haile, S.M. Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2. ChemSusChem. 2009, 2, 735–739.
  • Abe, T.; Yoshida, T.; Tokita, S.; Taguchi, F.; Imaya, H.; Kaneko, M. Factors affecting selective electrocatalytic CO2 reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode. J. Electroanal. Chem. 1996, 412, 125–132.
  • Jitaru, M.; Lowy, D.A.; Toma, M.; Toma, B.C.; Oniciu, L. Electrochemical reduction of carbon dioxide on flat metallic cathodes. J. Appl. Electrochem. 1997, 27, 875–889.
  • Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.
  • Blankenship, R.E.; Tiede, D.M.; Barber, J. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.
  • Gondal, M.A.; Dastageer, M.A.; Rashid, S.G.; Zubair, S.M.; Ali, M.A.; Anjum, D.H.; Lienhard, J.H.; McKinley, G.H.; Varanassi, K. Plasmon resonance enhanced photocatalysis under visible light with Au/Cu-TiO2 nanoparticles: Removal Cr(VI) from water as a case of study. Sci. Adv. Mater. 2013, 5, 2007–2014.
  • Wu Jeffrey, C.S.; Lin, Hung-Ming. Photo reduction of CO2 to methanol via TiO2 photocatalyst. Int. J. Photoenergy 2005, 7, 115–119.
  • Liu, H.; Dao, A.Q.; Fu, C. Activities of combined TiO2 semiconductor nanocatalysts under solar light on the reduction of CO2. J. Nanosci. Nanotechnol. 2016, 16, 3437–3446.
  • Maoa, J.; Penga, T.; Zhanga, X.; Lia, K.; Zana, L. Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation. Catal. Commun. 2012, 28, 38–41.
  • Tseng, H.; Chang, W.C.; Wu, J.C.S. Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Appl. Catal., B. 2002, 37, 37–48.
  • Dey, G.R.; Belapurkar, A.D.; Kishore, K. Photo-catalytic reduction of carbon dioxide to methane using TiO2 as suspension in water. J. Photochem. Photobiol. A Chem. 2004, 163, 503–508.
  • Gondal, M.A.; Ali, M.A.; Dastageer, M.A.; Chang, X. CO2 conversion into methanol using granular silicon carbide (α6H-SiC): A comparative evaluation of 355 nm Laser and Xenon mercury broad band radiation sources. Catal. Lett. 2013, 143, 108–117.
  • Yousong, L.; Guangbin, J.; Dastageer, M.A.; Lei, Z.; Junyi, W.; Bin, Z.; Chang, X.; Gondal, M.A. High-active direct Z-scheme Si/TiO2 photocatalyst for boosted CO2 aeduction into value-added methanol. RSC Adv. 2014, 4, 56961–56969.
  • Maruthamuthu, P.; Ashokkomar, M.; Gurunathan, K.; Subramanian, E.; Shastri, M.V.C. Hydrogen evolution from water with visible radiation in presence of Cu (II)/WO3 and electron relay. Int. J. Hydrogen. Energy 1989, 14, 525–528.
  • Maruthamuthu, P.; Ashokkomar, M. Hydrogen production with visible light using metal loaded-WO3 and MV2+ in aqueous medium. Int. J. Hydrogen Energy 1989, 14, 275–277.
  • Zou, Z.; Ye, J.; Arakawa, H. Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties. Chem. Phys. Lett. 2000, 332, 271–277.
  • Zou, Z.; Ye, J.; Arakawa, H. Photophysical and photocatalytic properties of InMO 4 (M= Nb5+, Ta5+) under visible light irradiation. Mater. Res. Bull. 2001, 36, 1185.
  • Chen, H.C.; Chou, H.C.; Wu, J.C.; S HY Lin, Sol-gel prepared InTaO4 and its photocatalytic characteristics. J. Mater. Res. 2008, 23, 1364–1370.
  • Wang, Z.Y.; Chou, H.C.; Wu, J.C.S.; Tsai, D.P.; Mul, G. CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy. Appl. Catal. A Gen. 2010, 380, 172–177.
  • Sun, X.; Shi, Y.; Ji; Li, H.; Cai, X.S.; Zheng, C. Nanocasting synthesis of ordered mesoporous indium tin oxide (ITO) materials with controllable particle size and high thermal stability. J. Alloys Compd. 2012, 545, 5–11.
  • Liu, X.; Wang, R.; Zhang, T.; He, Y.; Tu, J.; Li, X. Synthesis and characterization of mesoporous indium oxide for humidity-sensing applications. Sens. Actuator B-Chem. 2010, 150, 442–448.
  • Chang, S.C.; Huang, M.H. Formation of short In2O3 nanorod arrays within mesoporous silica. J. Phys. Chem. C 2008, 112, 2304–2307.
  • Lai, X.; Wang, H.; Mao, D.; Yang, N.; Yao, J.; Xing, C.; Wang, D.; Li, X. Mesoporous indium oxide synthesized via a nanocasting route. Mater. Lett. 2008, 62, 3868–3871.
  • Zheng, L.; Chen, C.; Zheng, Y. Photocatalytic activity of ZnO/Sn1-ZnO2 nanocatalysts: A synergistic effect of doping and heterojunction. Appl. Catal. B Environ. 2014, 148, 44–50.
  • Slamet, H.W.; Nasution, E.; Purnama, S.; Kosela, J.G. Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method. Catal. Commun. 2005, 6, 313–319.
  • Lua, X.; Yina, L. Porous indium oxide nanorods: synthesis, characterization and gas sensing properties. J. Mater. Sci. Technol. 2011, 27, 680–684.
  • Lo, K.C.; Ho, H.P.; Fu, K.Y.; Chu, P.K. Synthesis of indium oxide nanorods on indium phosphide substrate using plasma immersion ion implantation. Surf. Coat. Technol. 2007, 201, 6816–6818.
  • Amith, M.; Anirudha, B.; Leppert, V.J.; Risbud, S.H.; Kennedy, I.M.; Lee, H.W.H. Synthesis and characterization of indium oxide nanoparticle. Nano Letters. 2001, 1, 287–289.
  • Chen, F.; Kitai, A.H. Template synthesis of indium nanowires using anodic aluminum oxide membranes. J. Nanosci. Nanotechnol. 2008, 8, 4488–4493.
  • E. Liu, L., Kang, F.; Wu, T.; Sun, X., Hu, Y., Yang, H., Liu, J. Photocatalytic Reduction of CO2 into methanol over Ag/TiO2 nanocomposites enhanced by surface plasmon resonance. Plasmonics 2014, 9, 61–70.
  • Gondal, M.A.; Ali, M.A.; Chang, X.F.; Shen, K.; Xu, Q.Y.; Yamani, Z.H. Pulsed laser-induced photocatalytic reduction of greenhouse gas CO2 into methanol: A value-added hydrocarbon product over SiC. J. Environ. Sci. Health A 2012, 47, 1571–1576.
  • Sebastian, S.; Helmut, B.; Wilhelm, F.M. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A 1998, 174, 137–146.
  • David, A.H.; Alberto, F.A.; Irene, C.; Merced, M.; Stuart, H. Synthesis and characterization of mesoporous aluminosilicates for copper removal from aqueous medium. Mater. Sci. Appl. 2012, 3, 485–491.
  • Kubelka, P.; Munk, F. An article on optics of paint layers. Z. Tech. Phys. (Leipzig) 1931, 12, 593–609.
  • Kubelka, P. New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Am. 1948, 38, 448–457.
  • Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46.
  • Gondal, M.A.; Qahatan, T.F.; Dastageer, M.A.; Yamani, Z.H.; Anjum, D.H. A rapid and cost-effective laser based synthesis of high purity cadmium selenide quantum dots. J. Nanosci. Nanotechnol. 2016, 16, 867–872.
  • Gondal, M.A.; Qahatan, T.F.; Dastageer, M.A. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles. J. Nanosci. Nanotechnol. 2013, 13, 5759–5766.
  • Saleh, T.A.; Gondal, M.A.; Drmosh, Q.A. Optical properties of bismuth oxide nanoparticles synthesized by pulsed laser ablation technique. Sci. Adv. Mater. 2012, 4, 507–510.
  • Yang, H.; Liu, L.; Liang, H.; Wei, J.; Yang, Y. Phase-controlled synthesis of monodispersed porous In2O3 nanospheres via an organic acid-assisted hydrothermal process. CrystEngComm. 2011, 13, 5011–5016.
  • International Union Of Pure And Applied Chemistry Terminology. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part I: Suggested protocol. Pure Appl. Chem. 1999, 71, 303–320.
  • Schüler, N.; Hecht, K.; Kraut, M.; Dittmeyer, R. On the solubility of carbon dioxide in binary water–methanol mixtures. J. Chem. Eng. Data. 2012, 57, 2304–2308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.