Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 8
467
Views
13
CrossRef citations to date
0
Altmetric
Articles

Nitrogen removal and its relationship with the nitrogen-cycle genes and microorganisms in the horizontal subsurface flow constructed wetlands with different design parameters

, , , , , , & show all
Pages 804-818 | Received 09 Jan 2017, Accepted 16 Feb 2017, Published online: 10 Apr 2017

References

  • Hu, Y.S.; Zhao, Y.Q.; Zhao, X.H.; Kumar, J.L. High rate nitrogen removal in an alum sludge-based intermittent aeration constructed wetland. Environ. Sci. Technol. 2012, 46, 4583–4590.
  • Li, H.B.; Li, Y.H.; Gong, Z.Q.; Li, X.D. Performance study of vertical flow constructed wetlands for phosphorus removal with water quenched slag as a substrate. Ecol. Eng. 2013, 53, 39–45.
  • Wang, Z.; Dong, J.; Liu, L.; Zhu, G.F.; Liu, C.X. Study of oyster shell as a potential substrate for constructed wetlands. Water Sci. Technol. 2013, 67(10), 2265–2272.
  • Chen, J.; Liu, Y.S.; Su, H.C.; Ying, G.G.; Liu, F.; Liu, S.S.; He, L.Y.; Chen, Z.F.; Yang, Y.Q.; Chen, F.R. Removal of antibiotics and antibiotic resistance genes in rural wastewater by an integrated constructed wetland. Environ. Sci. Pollut. Res. 2014a, 22, 1794–1803.
  • Chen, J.; Wei, X.D.; Liu, Y.S.; Ying, G.G.; Liu, S.S.; He, L.Y.; Su, H.C.; Hu, L.X.; Chen, F.R.; Yang, Y.Q. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Optimization of wetland substrates and hydraulic loading. Sci. Total. Environ. 2016, 565, 240–248.
  • Zhang, H.C.; Weber, E.J. Identifying indicators of reactivity for chemical reductants in sediments. Environ. Sci. Technol. 2012, 47, 6959–6968.
  • Arroyo, P.; Ansola, G.; Sáenz de Miera, L.E. Effects of substrate, vegetation and flow on arsenic and zinc removal efficiency and microbial diversity in constructed wetlands. Ecol. Eng. 2013, 51, 95–103.
  • Chen, Y.; Wen, Y.; Tang, Z.; Li, L.; Cai, Y.; Zhou, Q. Removal processes of disinfection byproducts in subsurface-flow constructed wetlands treating secondary effluent. Water Res. 2014b, 51, 163–171.
  • Li, F.M.; Lu, L.; Zheng, X.; Zhang, X.W. Three-stage horizontal subsurface flow constructed wetlands for organics and nitrogen removal: effect of aeration. Ecol. Eng. 2014, 68, 90–96.
  • Hijosa-Valsero, M.; Fink, G.; Schlüsener, M.P.; Sidrach-Cardona, R.; Martín-Villacorta, J.; Ternes, T.; Bécares, E. Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere 2011, 83, 713–719.
  • Saeed, T.; Sun, G.Z. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manage. 2012, 112, 429–448.
  • Weerakoon, G.; Jinadasa, K.; Herath, G.; Mowjood, M.; Van Bruggen, J. Impact of the hydraulic loading rate on pollutants removal in tropical horizontal subsurface flow constructed wetlands. Ecol. Eng. 2013, 61, 154–160.
  • Wu, S.B.; Kuschk, P.; Brix, H.; Vymazal, J.; Dong, R.J. Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Res. 2014, 57, 40–55.
  • Wu, H.M.; Zhang, J.; Ngo, H.H.; Guo, W.S.; Hu, Z.; Liang, S.; Fan, J.L.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601.
  • Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total. Environ. 2007, 380, 48–65.
  • Ayaz, S. C.; Aktaş, Ö.; Fındık, N.; Akça, L.; Kınacı, C. Effect of recirculation on nitrogen removal in a hybrid constructed wetland system. Ecol. Eng. 2012, 40, 1–5.
  • Cao, W.P.; Wang, Y.M.; Sun, L.; Jiang, J.L.; Zhang, Y.Q. Removal of nitrogenous compounds from polluted river water by floating constructed wetlands using rice straw and ceramsite as substrates under low temperature conditions. Ecol. Eng. 2016, 88, 77–81.
  • Verhoeven, J.T.; Meuleman, A.F. Wetlands for wastewater treatment: opportunities and limitations. Ecol. Eng. 1999, 12, 5–12.
  • Kadlec, R.H.; Knight, R.L.; Vymazal, J.; Brix, H.; Cooper, P.; Haberl, R. Constructed Wetlands for Pollution Control, International Water Association Publishing: London, UK, 2000.
  • Kuschk, P.; Wieβner, A.; Kappelmeyer, U.; Weiβbrodt, E.; Kästner, M.; Stottmeister, U. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Res. 2003, 37, 4236–4242.
  • Reinhardt, M.; Müller, B.; Gächter, R.; Wehrli, B. Nitrogen removal in a small constructed wetland: an isotope mass balance approach. Environ. Sci. Technol. 2006, 40(10), 3313–3319.
  • Molle, P.; Prost-Boucle, S.; Lienard, A. Potential for total nitrogen removal by combining vertical flow and horizontal flow constructed wetlands: a full-scale experiment study. Ecol. Eng. 2008, 34, 23–29.
  • Jetten, M.S.M.; Logemann, S.; Muyzer, G.; Robertson, L.A.; de Vries, S.; van Loosdrecht, M.C.; Kuenen, J.G. Novel principles in the microbial conversion of nitrogen compounds. Anton. Leeuw. Int. J. G. 1997, 71, 75–93.
  • Francis, C.A.; Roberts, K.J.; Beman, J.M.; Santoro, A.E.; Oakley, B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA. 2005, 102(41), 14683–14688.
  • Ingalls, A.E.; Shah, S.R.; Hansman, R.L.; Aluwihare, L.I.; Santos, G.M.; Druffel, E.R.; Pearson, A. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc. Natl. Acad. Sci. USA. 2006, 103(17), 6442–6447.
  • Wuchter, C.; Abbas, B.; Coolen, M.J.; Herfort, L.; van Bleijswijk, J.; Timmers, P.; Strous, M.; Teira, E.; Herndl, G.J.; Middelburg, J.J.; Schouten, S.; Damsté, J.S.S. Archaeal nitrification in the ocean. Proc. Natl. Acad. Sci. USA. 2006, 103(33), 12317–12322.
  • Park, H.D.; Wells, G.F.; Bae, H.; Criddle, C.S.; Francis, C.A. Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl. Environ. Microb. 2006, 72(8), 5643–5647.
  • You, J.; Das, A.; Dolan, E.M.; Hu, Z.Q. Ammonia-oxidizing archaea involved in nitrogen removal. Water Res. 2009, 43, 1801–1809.
  • Leininger, S.; Urich, T.; Schloter, M.; Schwark, L.; Qi, J.; Nicol, G.; Prosser, J.; Schuster, S.; Schleper, C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 2006, 442(7104), 806–809.
  • Tourna, M.; Freitag, T.E.; Nicol, G.W.; Prosser, J.I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 2008, 10(5), 1357–1364.
  • Wang, S.Y.; Wang, Y.; Feng, X.J.; Zhai, L.M.; Zhu, G.B. Quantitative analyses of ammonia-oxidizing archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Appl. Microbiol. Biot. 2011, 90, 779–787.
  • Sims, A.; Horton, J.; Gajaraj, S.; McIntosh, S.; Miles, R.J.; Mueller, R.; Reed, R.; Hu, Z. Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands. Water Res. 2012, 46, 4121–4129.
  • Chon, K.; Chang, J.S.; Lee, E.; Lee, J.; Ryu, J.; Cho, J. Abundance of denitrifying genes coding for nitrate (narG). nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands. Ecol. Eng. 2011, 37, 64–69.
  • Horn, M.A.; Drake, H.L.; Schramm, A. Nitrous oxide reductase genes (nosZ) of denitrifying microbial populations in soil and the earthworm gut are phylogenetically similar. Appl. Environ. Microb. 2006, 72(2), 1019–1026.
  • Standardization Administration of the People's Republic of China. Water quality-Determination of total nirtrogen-Alkline potassium persulfate digestion UV spectrophotometric method (HJ 636–2012). 2012. Available at http://down.foodmate.net/standard/sort/9/29921.html (accessed Jan 2017).
  • Standardization Administration of the People's Republic of China. Water quality- Determination of ammonia nitrogen-Salicylic acid spectrophotometry (HJ 536-2009). 2009. Available at http://down.foodmate.net/standard/sort/9/21845.html (accessed Jan 2017).
  • Standardization Administration of the People's Republic of China. Water quality- Determination of nitrate-Spectrophotometric method with phenol disulfonic acid (GB/T 7480-1987). 1987. Available at http://down.foodmate.net/standard/sort/3/28916.html (accessed Jan 2017).
  • Standardization Administration of the People's Republic of China. Water quality- Determination of nitrogen (nitrite)-Spectrophotometric method (GB/T 7480-1987). 1987. Available at http://down.foodmate.net/standard/sort/3/11644.html (accessed Jan 2017).
  • Su, H.C.; Ying, G.G.; Tao, R.; Zhang, R.Q.; Zhao, J.L., Liu, Y.S. Class 1 and 2 integrons, sul resistance genes and antibiotic resistance in Escherichia coli isolated from Dongjiang River, South China. Environ. Pollut. 2012, 169, 42–49.
  • Su, H.C.; Pan, C.G.; Ying, G.G.; Zhao, J.L.; Zhou, L.J.; Liu, Y.S.; Tao, R.; Zhang, R.Q.; He, L.Y. Contamination profiles of antibiotic resistance genes in the sediments at a catchment scale. Sci. Total. Environ. 2014, 490, 708–714.
  • Beman, J.M.; Francis, C.A. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahía del Tóbari, Mexico. Appl. Environ. Microb. 2006, 72(12), 7767–7777.
  • Anceno, A.J.; Rouseau, P.; Béline, F.; Shipin, O.V.; Dabert, P. Evolution of N-converting bacteria during the start-up of anaerobic digestion coupled biological nitrogen removal pilot-scale bioreactors treating high-strength animal waste slurry. Bioresour. Tchenol. 2009, 100(14), 3678–3687.
  • Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270.
  • Chao, A.; Shen, T.J. Nonparametric estimation of Shannon's index of diversity when there are unseen species in sample. Environ. Ecol. Stat. 2003, 10, 429–443.
  • Faith, D.P. Systematics and conservation: on predicting the feature diversity of subsets of taxa. Cladistics 1992, 8, 361–373.
  • Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA. 2006, 103(3), 626–631.
  • Forest, F.; Grenyer, R.; Rouget, M.; Davies, T.J.; Cowling, R.M.; Faith, D.P.; Balmford, A.; Manning, J.C.; Procheş, Ş.; van der Bank, M. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 2007, 445(7129), 757–760.
  • Braker, G.; Fesefeldt, A.; Witzel, K.P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microb. 1998, 64(10), 3769–3775.
  • Kandeler, E.; Deiglmayr, K.; Tscherko, D.; Bru, D.; Philippot, L. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microb. 2006, 72(9), 5957–5962.
  • Park, H.D.; Noguera, D.R. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 2004, 38, 3275–3286.
  • Fitzgerald, C.M.; Camejo, P.; Oshlag, J.Z.; Noguera, D.R. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen. Water Res. 2015, 70, 38–51.
  • Tanner, C.; Kadlec, R. Oxygen flux implications of observed nitrogen removal rates in subsurface-flow treatment wetlands. Water Sci. Technol. 2003, 48(5), 191–198.
  • Gaboutloeloe, G. K.; Chen, S.; Barber, M. E.; Stöckle, C. O. Combinations of horizontal and vertical flow constructed wetlands to improve nitrogen removal. Water Air Soil Pollut. 2009, 9, 279–286.
  • Ong, S. A.; Uchiyama, K.; Inadama, D.; Ishida, Y.; Yamagiwa, K. Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresour. Technol. 2010, 101, 7239–7244.
  • Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res. 2013, 47, 4795–4811.
  • Cooper, P. A review of the design and performance of vertical-flow and hybrid reed bed treatment systems. Water Sci. Technol. 1999, 40(3), 1–9.
  • Abidi, S.; Kallali, H.; Jedidi, N.; Bouzaiane, O.; Hassen, A. Comparative pilot study of the performances of two constructed wetland wastewater treatment hybrid systems. Desalination 2009, 246, 370–377.
  • Fan, J.L.; Liang, S.; Zhang, B.; Zhang, J. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy. Environ. Sci. Pollut. Res. 2013, 20, 2448–2455.
  • Duan, Q.J.; Shang, S.Q.; Wu, Y.D. Rapid diagnosis of bacterial meningitis in children with fluorescence quantitative polymerase chain reaction amplification in the bacterial 16S rRNA gene. Eur. J. Pediatr. 2009, 168 (2), 211–216.
  • Sun, D. L.; Jiang, X.; Wu, Q. L.; Zhou, N. Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl. Environ. Microbiol. 2013, 79(19), 5962–5969.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.