Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 9
311
Views
7
CrossRef citations to date
0
Altmetric
Articles

Toxicity identification and evaluation (TIE) of a petroleum refinery wastewater

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 842-848 | Received 06 Dec 2016, Accepted 27 Feb 2017, Published online: 27 Apr 2017

References

  • Misiti, T.; Tezel, U.; Pavlostathis, S.G. Fate and effect of naphthenic acids on oil refinery activated sludge wastewater treatment systems. Water Res. 2013, 47, 449–460.
  • Chen, C.; Wei, L.; Guo, X.; Guo, S.; Yan, G. Investigation of heavy oil refinery wastewater treatment by integrated ozone and activated carbon -supported manganese oxides. Fuel Process. Technol. 2014, 124, 165–173.
  • Avci, A.; Kaçaz, M.; Durak, I. Peroxidation in muscle and liver tissues from fish in a contaminated river due to a petroleum refinery industry. Ecotoxicol. Environ. Saf. 2005, 60, 101–105.
  • Diya'udeen, B.H.; Daud, W.M.A.W.; Aziz, A. Treatment technologies for petroleum refinery effluents: A review. Process. Saf. Environ. Prot. 2011, 89, 95–105.
  • Jo, M.S.; Rene, E.R.; Kim, S.H.; Park, H.S. An analysis of synergistic and antagonistic behavior during BTEX removal in batch system using response surface methodology. J. Hazard. Mater. 2008, 152, 1276–1284.
  • Damato, M.; Alem Sobrinho, P.; Morita, D.M. Estudo da influência do nível de tratamento de efluentes de refinaria de petróleo na remoção de hidrocarbonetos aromáticos polinucleares e na toxicidade aguada para Daphnia similis. In Congreso Interamericano de Ingeniería Sanitaria y Ambiental, Lima, Peru, Nov 1–5, 1998; Asociación Interamericana de Ingeniería Sanitaria y Ambiental: São Paulo, Brazil; 1–17.
  • Norberg-King, T.J.; Mount, D.I.; Durhan, E.J.; Ankley, G.T.; Burkhard, L.P.; Amato, J.R.; Lukasewycz; Shubauer-Beringan, M.K.; Anderson-Carnahan, L. Methods for Aquatic Toxicity Identification Evaluations: Phase I Toxicity Characterization Procedures. Technical Report EPA/600/6-91/003; United States Environmental Protection Agency (USEPA): Duluth, MN, 1991; 1–127.
  • Tischler, L. In Experiences in Toxicity Reduction Evaluations for Petroleum Refineries. Proceedings of the Water Environment Federation's Annual Technical Exhibition and Conference, WEFTEC 2013, Chicago, IL, Oct 5–9, 2013; Water Environment Federation: Alexandria, VA, 2013; 3585–3595.
  • Nwanyanwu, C.E.; Nweke, C.O.; Orji, J.C.; Opurum, C.C. Phenol and Heavy Metal Tolerance Among Petroleum Refinery Effluent Bacteria. J. Res. Biol. 2013, 3, 922–931.
  • Khan, W.Z.; Najeebb, I.; Tuiyebayevaa, M.; Makhtayeva, Z. Refinery wastewater degradation with titanium dioxide, zinc oxide, and hydrogen peroxide in a photocatalytic reactor. Process Saf. Environ. Prot. 2015, 94, 479–486.
  • Environmental National Committee - Brazil (CONAMA). Number 430. Conditions and Standards of Wastewater Discharge. Ministry of the Environment. Official Journal of Brazilian Government, 2011; 89 ( In Portuguese).
  • Norberg-King, T.J.; Mount, D.I.; Amato, J.R.; Jensen, D.A.; Thompson, J.A. Toxicity Identification Evaluations: Characterization of Chronically Toxic Effluents, Phase I. Technical Report EPA/600/6-91/005F; United States Environmental Protection Agency (USEPA): Duluth, MN, 1992; 1–60.
  • Norberg-King, T.J. A Linear Interpolation Method For Sublethal Toxicity: The Inhibition Concentration (ICp) Approach. Version 2.0 (Software). USEPA-Duluth (MN), 1993.
  • American Public Health Association – APHA. Standard Methods for the Examination of Water and Wastewater. 22nd ed. American Public Health Association, American Water Works Association, Water Environment Federation: Washington, 2012; 1360.
  • Mount, D.I.; Norberg-King, T.J.; Ankley, G.T.; Burkhard, L.; Durhan, E.J.P.; Shubauer-Beringan, M.K.; Lukasewycz, M.T. Methods for Aquatic Toxicity Identification Evaluations: Phase III Toxicity Confirmation Procedures for Samples Exhibiting Acute and Chronic Toxicity. Technical Report EPA/600/R-92/081; United States Environmental Protection Agency (USEPA): Duluth, MN, 1993; 1–32.
  • Hockett, J.R.; Mount, D.R. Use of metal chelation agents to differentiate among sources of acute aquatic toxicity. Environ. Toxicol. Chem. 1996, 15, 1687–1693.
  • Cooper, N.L.; Bidwell, J.R.; Kumar, A. Toxicity of copper, lead, and zinc mixtures to Ceriodaphnia dubia and Daphnia carinata. Ecotoxicol. Environ. Saf. 2009, 72, 1523–1528.
  • United States Environmental Protection Agency (USEPA). Aquatic life ambient freshwater quality criteria: Copper, Report EPA822/R-07/001, Washington, DC, 2007; 1–204.
  • Van Sprang, P.; Janssen, C.R. Toxicity Identification of metals: Development of Toxicity Identification Fingerprints. Environ. Toxicol. Chem. 2001, 20, 2604–2610.
  • Kszos, L.A.; Stewart, A.J.; Taylor, P.A. An evaluation of nickel toxicity to Ceriodaphnia dubia and Daphnia magna in a contaminated stream and in laboratory tests. Environ. Toxicol. Chem. 1992, 11, 1001–1012.
  • Keithly, J.; Brooker, J.A.; Deforest, D.K.; Wu, B.K.; Brix, K.V. Acute and chronic toxicity of nickel to a cladoceran (Ceriodaphnia dubia) and an Amphipod (Hyalella Azteca). Environ. Toxicol. Chem. 2004, 23, 691–696.
  • Naddy, R.B.; Stern, G.R.; Gensemer, R.W. Effect of culture water hardness on the sensitivity of Ceriodaphnia dubia to copper toxicity. Environ. Toxicol. Chem. 2003, 22, 1269–1271.
  • Sciera, K.L.; Isely, J.J.; Tomasso, J.R.; Klaine, S.J. Influence of multiple water-quality characteristics on copper toxicity to Fathead minnows (Pimephales promelas). Environ. Toxicol. Chem. 2004, 23, 2900–2905.
  • Paquin, P.R.; Santore, R.C.; Wu, K.B.; Kavvadas, C.D.; Di Toro, D.M. The biotic ligand model: a model of the acute toxicity of metals to aquatic life. Environ. Sci. Policy. 2000, 3, 175–182.
  • Mariano, J.B. Impactos ambientais no refino do petróleo. Doctoral Thesis. Federal University of Rio de Janeiro. Rio de Janeiro, RJ, Brazil, 2012. Available at www.ppe.ufrj.br/ppe/production/tesis/jbmariano.pdf (accessed Feb 2017). In Portuguese.
  • Ancheyta, J. Modeling and Simulation of Catalytic Reactors for Petroleum Refining, 1st ed. Wiley: New York, 2011; 528.
  • Cibati, A.; Cheng, K.Y.; Morris, C.; Ginige, M.P.; Sahinkay. E.; Pagnanelli, F.; Kaksonen, A.H. Selective precipitation of metals from synthetic spent refinery catalyst leach liquor with biogenic H2S produced in a lactate-fed anaerobic baffled reactor. Hydrometall. 2013, 139, 154–161.
  • Manning, T.M.; Wilson, S.P.; Chapman, J.C. Toxicity of Chlorine and Other Chlorinated Compounds to Some Australian Aquatic Organisms. Bull. Environ. Contam. Toxicol. 1996, 56, 971–976.
  • Thurston, R.V.; Russo, R.C.; Emerson, K. Aqueous Ammonia Equilibrium –Tabulation of Percent Un-ionized Ammonia, Report EPA/600/3-79/091. United States Environmental Protection Agency (USEPA): Duluth, MN, 1979; 1–428.
  • Johnson, C.G. Effects of pH and hardness on acute and chronic toxicity of un-ionized ammonia to Ceriodaphnia dubia, 1995, 80. Master Thesis. University of Wisconsin, Wisconsin, WI, USA, 1995; 80. Available at https://epapers.uwsp.edu/thesis/1995/johnsonC.pdf (accessed Feb 2017).
  • Nimmo, D.W.R.; Link, D.; Parrish, L.P.; Rodriguez, G.J.; Wuerthele, W.; Davies, P.H. Comparison of on-site and laboratory toxicity tests: derivation of site-specific criteria for un-ionized ammonia in a Colorado transitional stream. Environ. Toxicol. Chem. 1989, 8, 1177–1189.
  • Cowgill, U.M.; Milazzo, D.P. The response of the three-brood Ceriodaphnia test to 15 formulations and pure compounds in common use. Arch. Environ. Contam. Toxicol. 1991, 21, 35–40.
  • Tomasso, J.R.; Goudie, C.A.; Simco, B.A.; Davis, K.B. Effects of environmental pH and calcium on ammonia toxicity in channel catfish. Transactions of the American Fisheries Society, 1980, 109, 229–234.
  • Verbruggen, E.M.J. Environmental Risk Limits for Polycyclic Aromatic Hydrocarbons (PAHs): For Direct Aquatic, Benthic, and Terrestrial Toxicity, RIVM Report 607711007/2012. National Institute for Health and Environment (RIVM), Bilthoven, The Netherlands, 2012; 1–337.
  • White, P.; Rasmussen, J.B.; Blaise, C. Sorption of organic genotoxins to particulate matter in industrials effluents. Environ. Mol. Mutagen. 1995, 26, 1–27.
  • Reece, C.H.; Burks, S.L. Isolation and Chemical Characterization of Petroleum Refinery Wastewater Fractions Acutely Lethal to Daphnia magna. Proceedings of Aquatic Toxicology and Hazard Assessment: Seventh Symposium, ASTM STP 854, Cardwell, R.D.; Purdy, R.; Bahner, R.C., Eds. American Society for Testing and Materials, Philadelphia, PA, 1985; 319–332.
  • Burks, S. Evaluation of the effectiveness of granular activated carbon adsorption and aquaculture for removing toxic compounds from treated petroleum refinery effluents, Report EPA/600/2-81/067, U.S. Environmental Protection Agency (USEPA): Washington, D.C, 1980; 1–59.
  • Kimerle, R. Aquatic and terrestrial ecotoxicology of linear alkylbenzene sulfonate. Tensides Surfact. Deter. 1989, 26, 169–176.
  • Coelho, K.S. Estudos ecotoxicológicos com ênfase na avaliação da toxicidade de surfactantes aniônicos aos cladóceros Daphnia similis, Ceriodaphnia dubia e Ceriodaphnia silvestrii. Master Thesis. Federal University of São Carlos. São Carlos, SP, Brazil, 2008. Available at https://repositorio.ufscar.br/handle/ufscar/1938?show=full (accessed Feb 2017). In Portuguese.
  • Erickson, R.J.; Benoit, D.A.; Mattson, V.R.; Nelson,   Jr.; Leonard, E.N. The effects of water chemistry on the toxicity of copper to fathead minnows. Environ. Toxicol. Chem. 1996, 15, 181–193.
  • Ma, H.; Allen, H.E.; Yin, Y. Characterization of isolated fractionations of dissolved organic matter from natural waters and a wastewater effluent. Water Res. 2001, 35, 985–996.
  • Heijerick, D.G.; Janssen, C.R.; De Coen, W.M. The combined effects of hardness, pH, and dissolved organic carbon on the chronic toxicity of Zn to D. magna: development of a surface response model. Arch. Environ. Contam. Toxicol. 2003, 44, 210–217.
  • Nys, C.; Janssen, C.R.; Blust, R.; Smolders, E.; De Schamplare, K.A.C. Reproductive toxicity of binary and ternary mixture combinations of nickel, zinc and lead to Ceriodaphnia dubia is best predicted with the independent action model. Environ. Toxicol. Chem. 2016, 35, 1796–1805.
  • Schubauer-Berigan, M.K.; Dierkes, J.R.; Monson, P.D.; Ankley, G.T. The pH-dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca, and Lumbriculus variegatus. Environ. Toxicol. Chem. 1993, 12, 1261–1266.
  • Oliveira-Filho, E.C.; Da-Matta, A.C.; Cabral, L.L.; Veiga, L.F.; Paumgartten, J.R. Comparison between four and seven-day Ceriodaphnia dubia survival and reproduction test protocols using oil refinery effluent samples. Braz. Arch. Biol. Technol. 2008, 51, 137–142.
  • United States Environmental Protection Agency (USEPA). Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. Report EPA-821-R-02-013, Whashington, DC, 2002; 1–335.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.