Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 9
539
Views
27
CrossRef citations to date
0
Altmetric
Articles

Simultaneous atrazine degradation and E. coli inactivation by simulated solar photo-Fenton-like process using persulfate

, , , , &
Pages 849-855 | Received 20 Oct 2016, Accepted 01 Mar 2017, Published online: 27 Apr 2017

References

  • Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, W.P. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886.
  • Neta, P.; Huie, R.E.; Ross, A.B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284.
  • Huang, Y.-F.; Huang, Y.-H. Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process. J. Hazard. Mater. 2009, 162, 1211–1216.
  • Saien, J.; Ojaghloo, Z.; Soleymani, A.R.; Rasoulifard, M.H. Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate. Chem. Eng. J. 2011, 167, 172–182.
  • Anipsitakis, G.P.; Tufano, T.P.; Dionysiou, D.D. Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate. Water Res. 2008, 42, 2899–2910.
  • Ahn, S.; Peterson, T.D.; Righter, J.; Miles, D.M.; Tratnyek, P.G. Disinfection of ballast water with iron activated persulfate. Environ. Sci. Technol. 2013, 47, 11717–11725.
  • Wordofa, D.N. Application of iron activated persulfate for disinfection in water treatment. M.S. Thesis, University of California, Riverside, 2014. Available at https://escholarship.org/uc/item/174086hx (accessed Oct 2016).
  • Khan, J.A.; He, X.; Khan, H.M.; Shah, N.S.; Dionysiou, D.D. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O82−/Fe2+ and UV/HSO5−/Fe2+ processes: A comparative study. Chem. Eng. J. 2013, 218, 376–383.
  • Ahmed, M.M.; Chiron, S. Solar photo-Fenton like using persulphate for carbamazepine removal from domestic wastewater. Water Res. 2014, 48, 229–236.
  • Ahmed, M.M.; Brienza, M.; Goetz, V.; Chiron, S. Solar photo-Fenton using peroxymonosulfate for organic micropollutants removal from domestic wastewater: Comparison with heterogeneous TiO2 photocatalysis. Chemosphere 2014, 117, 256–261.
  • Safarzadeh-Amiri, A.; Bolton, J.R.; Cater, S.R. Ferrioxalate mediated solar degradation of organic contaminants in water. Solar Energy 1996, 56, 439–443.
  • Tsydenova, O.; Batoev, V.; Batoeva, A. Solar-enhanced advanced oxidation processes for water treatment: Simultaneous removal of pathogens and chemical pollutants. Int. J. Environ. Res. Public Health 2015, 12, 9542–9561.
  • Subramanian, G.; Parakh, P.; Prakash, H. Photodegradation of methyl orange and photoinactivation of bacteria by visible light activation of persulfate using a tris(2,2′-bipyridyl)ruthenium (II) complex. Photochem. Photobiol. Sci. 2012, 12(3), 456–466.
  • Michael-Kordatou, I.; Iacovou, M.; Frontistis, Z.; Hapeshi, E.; Dionysiou, D.D.; Fatta-Kassinos, D. Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation. Water Res. 2015, 85, 346–358.
  • Rincón, A.-G.; Pulgarin, C. Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: Implications in solar water disinfection. Appl. Catal. B 2004, 51, 283–302.
  • Moncayo-Lasso, A.; Mora-Arismendi, L.E.; Rengifo-Herrera, J.A.; Sanabria, J.; Benítez, N.; Pulgarin, C. The detrimental influence of bacteria (E. coli, Shigella and Salmonella) on the degradation of organic compounds (and vice versa) in TiO2 photocatalysis and near-neutral photo-Fenton processes under simulated solar light. Photochem. Photobiol. Sci. 2012, 11, 821–827.
  • Wang, J.; Li, C.; Zhuang, H.; Zhang, J. Photocatalytic degradation of methylene blue and inactivation of Gram-negative bacteria by TiO2 nanoparticles in aqueous suspension. Food Control 2013, 34, 372–377.
  • Fanourgiakis, S.; Frontistis, Z.; Chatzisymeon, T.; Venieri, D.; Mantzavinos, D. Simultaneous removal of estrogens and pathogens from secondary treated wastewater by solar photocatalytic treatment. Global Nest J. 2014, 16, 543–552.
  • Moncayo-Lasso, A.; Sanabria, J.; Pulgarin, C.; Benítez, N. Simultaneous E. coli inactivation and NOM degradation in river water via photo-Fenton process at natural pH in solar CPC reactor. A new way for enhancing solar disinfection of natural water. Chemosphere 2009, 77, 296–300.
  • Michael, I.; Hapeshi, E.; Michael, C.; Varela, A.R.; Kyriakou, S.; Manaia, C.M.; Fatta-Kassinos, D. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res. 2012, 46, 5621–5634.
  • Ortega-Gómez, E.; Ballesteros Martín, M.M.; Esteban García, B.; Sánchez Pérez, J.A.; Fernández Ibáñez, P. Solar photo-Fenton for water disinfection: An investigation of the competitive role of model organic matter for oxidative species. Appl. Catal. B 2014, 148–149, 484–489.
  • Timchak, E.; Gitis, V. A combined degradation of dyes and inactivation of viruses by UV and UV/H2O2. Chem. Eng. J. 2012, 192, 164–170.
  • Barrera, M.; Mehrab, M.; Gilbride, K.A.; McCarthy, L.H.; Laursen, A.E.; Bostan, V.; Pushchak, R. Photolytic treatment of organic constituents and bacterial pathogens in secondary effluent of synthetic slaughterhouse wastewater. Chem. Eng. Res. Des. 2012, 90, 1335–1350.
  • Nielsen, U.; Hastrup, C.; Klausen, M.M.; Pedersen, B.M.; Kristensen, G.H.; Jansen, J.L.C.; Bak, S.N.; Tuerk, J. Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3 + H2O2, PAC or ClO2. Water Sci. Technol. 2013, 67(4), 854–862.
  • Khandarkhaeva, M.S.; Batoeva, A.A.; Aseev, D.G.; Sizykh, M.R. Photoactivation of the oxidation process of para-chlorophenol in aqueous solutions. Russ. J. Appl. Chem. 2015, 88(10), 1605–1611.
  • Bolton, J.R.; Linden, K.G. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. J. Environ. Eng. 2003, 129, 209–215.
  • Linden, K.G.; Darby, J.L. Estimating effective germicidal dose from medium pressure UV lamps. J. Environ. Eng. 1997, 123(11), 1142–1149.
  • USEPA. Ultraviolet Disinfection Guidance Manual for the Final Long Term 2 Enhanced Surface Water Treatment Rule. US Environmental Protection Agency: Washington, D.C., 2006.
  • Malato, S.; Caceres, J.; Agüera, A.; Mezcua, M.; Hernando, J.; Vial, J.; Fernández-Alba, A.R. Degradation of imidacloprid in water by photo-Fenton and TiO2 photocatalysis at a solar pilot plant: a comparative study. Environ. Sci. Technol. 2001, 35, 4359–4366.
  • Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147(1), 1–59.
  • Rincón, A.-G.; Pulgarin, C. Field solar E. coli inactivation in the absence and presence of TiO2: Is UV solar dose an appropriate parameter for standardization of water solar disinfection? Solar Energy 2004, 77, 635–648.
  • Rincón, A.-G.; Pulgarin, C. Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale. Implications in solar disinfection at low temperature of large quantities of water. Catal. Today 2007, 122, 128–136.
  • Fernández, P.; Blanco, J.; Sichel, C.; Malato, S. Water disinfection by solar photocatalysis using compound parabolic reactors. Catal. Today 2005, 101, 345–352.
  • Sichel, C.; Tello, J.; de Cara, M.; Fernández-Ibáñez, P. Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal. Today 2007, 129, 152–160.
  • Pereira, J.H.O.S.; Vilar, V.J.P.; Borges, M.T.; González, O.; Santiago, E.; Boaventura, R.A.R. Photocatalytic degradation of oxytetracycline using TiO2 under natural and simulated solar radiation. Solar Energy 2011, 85, 2732–2740.
  • Bandala, E.R.; González, L.; Sanchez-Salas, J.L.; Castillo, J.H. Inactivation of Ascaris eggs in water using sequential solar driven photo-Fenton and free chlorine. J. Water Health 2012, 10(1), 20–30.
  • Rodríguez-Chueca, J.; Polo-López, M.I.; Mosteo, R.; Ormad, M.P.; Fernández Ibáñez, P. Disinfection of real and simulated urban wastewater effluents using a mild solar photo-Fenton. Appl. Catal. B 2014, 150–151, 619–629.
  • Ortega-Gómez, E.; Ballesteros Martín, M.M.; Esteban García, B.; Sánchez Pérez, J.A.; Fernández Ibáñez, P. Wastewater disinfection by neutral pH photo-Fenton: The role of solar radiation intensity. Appl. Catal. B 2016, 181, 1–6.
  • Cristale, J.; Dantas, R.F.; De Luca, A.; Sans, C.; Esplugas, S.; Lacorte, S. Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water. J. Hazard. Mater. 2017, 323, 242–249.
  • Mack, J.; Bolton, J.R. Photochemistry of nitrite and nitrate in aqueous solution: a review. J. Photochem. Photobiol. A 1999, 128, 1–13.
  • Sharpless, C.M.; Seibold, D.A.; Linden, K.G. Nitrate photosensitized degradation of atrazine during UV water treatment. Aquat. Sci. 2003, 65, 359–366.
  • Ndounla, J.; Kenfack, S.; Wéthé, J.; Pulgarin, C. Relevant impact of irradiance (vs. dose) and evolution of pH and mineral nitrogen compounds during natural water disinfection by photo-Fenton in a solar CPC reactor. Appl. Catal. B 2014, 148–149, 144–153.
  • Jimenez, M.; Oller, I.; Maldonado, M.I.; Malato, S.; Hernández-Ramírez, A.; Zapata, A.; Peralta-Hernández, J.M. Solar photo-Fenton degradation of herbicides partially dissolved in water. Catal. Today 2011, 161, 214–220.
  • Choi, H.-J.; Kim, D.; Lee, T.-J. Photochemical degradation of atrazine in UV and UV/H2O2 process: pathways and toxic effects of products. J. Environ. Sci. Health B 2013, 48(11), 927–934.
  • Hincapié, M.; Maldonado, M.I.; Oller, I.; Gernjak, W.; Sánchez-Pérez, J.A.; Ballesteros, M.M.; Malato, S. Solar photocatalytic degradation and detoxification of EU priority substances. Catal. Today 2005, 101, 203–210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.