Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 10
1,772
Views
50
CrossRef citations to date
0
Altmetric
Articles

Review of the ecotoxicological effects of emerging contaminants to soil biota

, , , , &
Pages 992-1007 | Received 17 Jan 2017, Accepted 15 Apr 2017, Published online: 09 Jun 2017

References

  • Jurado, A.; Vàzquez-Suñé, E.; Carrera, J.; López de Alda, M.; Pujades, E.; Barceló, D. Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Sci. Total Environ. 2012, 440, 82–94.
  • Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 2012, 416, 1–21.
  • Naidu, R.; Wong, M.H. Contaminants of emerging concern. Sci. Total Environ. 2013, 463–464, 1077–1078.
  • CAS. Chemical Abstracts Service. 2016. Available at https://www.cas.org/ (accessed Apr 2016).
  • EC - Regulation (EC) N° 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Brussels, 29 May 2007. Available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:136:0003:0280:EN:PDF (accessed Apr 2016).
  • EC - Regulation (EC) N° 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Brussels, 22 December 2009. Available at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:342:0059:0209:en:PDF (accessed Apr 2016).
  • EC - Regulation (EC) N° 726/2004 of the European parliament and of the Council of 31 March 2004 laying down Community procedures for the authorization and supervision of medicinal products for human and veterinary use and establishing a European Medicines Agency. Brussels, 30 April 2004. Available at http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004R0726&from=EN ( accessed Apr 2016).
  • EC - Regulation (EC) N° 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Brussels, 24 November 2009. Available at http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R1107&from=EN. (accessed Apr 2016).
  • Schriks, M.; Heringa, M.B.; van der Kooi, M.M.E.; de Voogt, P.; van Wezel, A.P. Toxicological relevance of emerging contaminants for drinking water quality. Water Res. 2010, 44(2), 461–476.
  • Michael, I.; Vasquez, M.I.; Hapeshi, E.; Haddad, T.; Baginska, E.; Kümmerer, K.; Fatta-Kassinos, D. Metabolites and transformation products of pharmaceuticals in the aquatic environment as contaminants of emerging concern. In Transformation Products of Emerging Contaminants in the Environment: Analysis, Processes, Occurrence, Effects and Risks; Lambropoulou, D.A.; Nollet, L.M.L., Eds., John Wiley and Sons Ltd: Chichester, UK, 2014; 425–469.
  • Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303.
  • Antunes, S.C.; Pereira, J.L.; Cachada, A.; Duarte, A.C.; Gonçalves, F.; Sousa, J.P.; Pereira, R. Structural effects of the bioavailable fraction of pesticides in soil: Suitability of elutriate testing. J. Hazard. Mater. 2010, 184(1–3), 215–225.
  • Tadeo, J.L.; Sánchez-Brunete, C.; Albero, B.; García-Valcárcel, A.I.; Pérez, R. Analysis of emerging organic contaminants in environmental solid samples. Central Eur. J. Chem. 2012, 10(3), 480–520.
  • Zhang, Y.; Xiao, S.; Sun, L.; Ge, Z.; Fang, F.; Zhang, W.; Wang, Y.; Cheng, Y. Rapid screening of bioactive compounds from natural products by integrating 5-channel parallel chromatography coupled with on-line mass spectrometry and microplate based assays. Anal. Chim. Acta 2013, 777, 49–56.
  • EPA. Contaminants of Emerging Concern including Pharmaceuticals and Personal Care Products. 2016. Available at http://water.epa.gov/scitech/cec/ (accessed Apr 2016).
  • Murray, K.E.; Thomas, S.M.; Bodour, A. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ. Pollut. 2010, 158(12), 3462–3471.
  • Wu, X.; Ernst, F.; Conkle, J.L.; Gan, J. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ. Int. 2013, 60, 15–22.
  • Smital, T. Acute and chronic effects of emerging contaminants. Hdb. Environ. Chem. 2008, 5, 105–142.
  • Bone, J.; Head, M.; Barraclough, D.; Archer, M.; Scheib, C.; Flight, D.; Voulvoulis, N. Soil quality assessment under emerging regulatory requirements. Environ. Int. 2010, 36(6), 609–622.
  • Santorufo, L.; Van Gestel, C.; Rocco, A.; Maisto, G. Soil invertebrates as bioindicators of urban soil quality. Environ. Pollut. 2012, 161, 57–63.
  • Liu, X.B.; Zhang, X.Y.; Wang, Y.X.; Sui, Y.Y.; Zhang, S.L.; Herbert, S.J.; Ding, G. Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant Soil Environ. 2010, 56(2), 87–97.
  • Flint, S.; Markle, T.; Thompson, S.; Wallace, E. Bisphenol A exposure, effects, and policy: a wildlife perspective. J. Environ. Manage. 2012, 104, 19–34.
  • Bao, L.-J.; Wei, Y.-L.; Yao, Y.; Ruan, Q.-Q.; Zeng, E.Y. Global trends of research on emerging contaminants in the environment and humans: a literature assimilation. Environ. Sci. Pollut. Res. 2015, 22(3), 1635–1543.
  • Fabietti, G.; Biasioli, M.; Barberis, R.; Ajmone-Marsan, F. Soil contamination by organic and inorganic pollutants at the regional scale: the case of Piedmont, Italy. J. Soils Sedim. 2009, 10(10), 290–300.
  • Balderacchi, M.; Benoit, P.; Cambier, P.; Eklo, O.M.; Gargini, A.; Gemitzi, A.; Gurel, M.; Kløve, B.; Nakic, Z.; Predaa, E.; Ruzicic, S.; Wachniew, P.; Trevisan, M. Groundwater pollution and quality monitoring approaches at the European level. Crit. Rev. Environ. Sci. Technol. 2013, 43(4), 323–408.
  • Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current status of agricultural and rural non-point source pollution assessment in China. Environ. Pollut. 2010, 158(5), 1159–1168.
  • EUGRIS. Portal for soil and water management in Europe. Diffuse Pollution, 2011. Available at http://www.eugris.info/FurtherDescription.asp?Ca=2&Cy=0&T=Diffuse%20pollution&e=91 (accessed Apr 2016).
  • Boryło, A.; Skwarzec, B.; Olszewski, G. The radiochemical contamination (210Po and 238U) of zone around phosphogypsum waste heap in Wiślinka (northern Poland). J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2012, 47(5), 675–687.
  • Macherius, A.; Eggen, T.; Lorenz, W.G.; Reemtsma, T.; Winkler, U.; Moeder, M. Uptake of galaxolide, tonalide, and triclosan by carrot, barley, and meadow fescue plants. J. Agricult. Food Chem. 2012, 60(32), 7785–7791.
  • Mahmoud, E.; Abd El-Kader, N. Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost. Land Degrad. Dev. 2015, 26(8), 819–824.
  • Clarke, B.O.; Smith S.R. Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ. Int. 2011, 37(1), 226–247.
  • EUGRIS. Portal for soil and water management in Europe. 2016. Available at http://www.eugris.info/ (accessed Apr 2016).
  • Kolar, L.; Erzen, N.K.; Hogerwerf, L.; van Gestel, C.A.M. Toxicity of abamectin and doramectin to soil invertebrates. Environ. Pollut. 2008, 151(1), 182–189.
  • Marques, C.; Pereira, R.; Gonçalves, F. Using earthworm avoidance behaviour to assess the toxicity of formulated herbicides and their active ingredients on natural soils. J. Soils Sedim. 2009, 9(2), 137–147.
  • Silva, P.M.C.S.; Pathiratne, A; van Gestel, C.A.M. Toxicity of chlorpyrifos, carbofuran, mancozeb and their formulations to the tropical earthworm Perionyx excavates. Appl. Soil Ecol. 2010, 44(1), 56–60.
  • Wang, Y.; Cang, T.; Zhao, X.; Yu, R.; Chen, L.; Wu, C.; Wang, Q. Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicol. Environ. Saf. 2012, 79, 122–128.
  • Eggen, T.; Asp, T.N.; Grave, K.; Hormazabal, V. Uptake and translocation of metformin, ciprofloxacin and narasin in forage- and crop plants. Chemosphere 2011, 85(1), 26–33.
  • Lin, D.; Zhou, Q.; Xu, Y.; Chen, C.; Li Y. Physiological and molecular responses of the earthworm (Eisenia fetida) to soil chlortetracycline contamination. Environ. Pollut. 2012, 171, 46–51.
  • Butler, E.; Whelan, M.J.; Ritz, K.; Sakrabani, R.; van Egmond, R. The effect of triclosan on microbial community structure in three soils. Chemosphere 2012, 89(2), 1–9.
  • Liu, F.; Ying, G.-G.; Yang, L.-H.; Zhou, Q.-X. Terrestrial ecotoxicological effects of the antimicrobial agent triclosan. Ecotoxicol. Environ. Saf. 2009, 72(1), 86–92.
  • Lin, D.; Zhou, Q.; Xie, X.; Liu, Y. Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia fetida). Chemosphere 2010, 81(10), 1328–1333.
  • Snyder, E.H.; O'Connor, G.A.; McAvoy, D.C. Toxicity and bioaccumulation of biosolids-borne triclocarban (TCC) in terrestrial organisms. Chemosphere 2011, 82(3), 460–467.
  • Dong, L.; Gao, J.; Xie, X.; Zhou, Q. DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida. Chemosphere 2012, 89(1), 44–51.
  • McKelvie, J.R.; Wolfe, D.M.; Celejewski, M.; Alaee, M.; Simpson, A.J.; Simpson, M.J. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action. Environ. Pollut. 2011, 159(12), 3620–3626.
  • Yoshimura, H.; Sawai, Y.; Tamotsu, S.; Sakai, A. 1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells. J. Chem. Ecol. 2011, 37(3), 320–328.
  • Eggen, T.; Heimstad, E.S.; Stuanes, A.O.; Norli, H.R. Uptake and translocation of organophosphates and other emerging contaminants in food and forage crops. Environ. Sci. Pollut. Res. Int. 2013, 20(7), 4520–4531.
  • Lemos, M.F.L.; van Gestel, C.M.; Soares, M.V.M. Reproductive toxicity of the endocrine disrupters vinclozolin and bisphenol A in the terrestrial isopod Porcellio scaber (Latreille, 1804). Chemosphere 2010, 78(7), 907–913.
  • Lemos, M.F.L.; Gestel, C.M.; Soares, A.M.V.M. Endocrine disruption in a terrestrial isopod under exposure to bisphenol A and vinclozolin. J. Soils Sedim. 2009, 9(5), 492–500.
  • Domene, X.; Ramírez, W.; Solà, L.; Alcañiz, J.M.; Andrés P. Soil pollution by nonylphenol and nonylphenol ethoxylates and their effects to plants and invertebrates. J. Soils Sedim. 2009, 9, 555–567.
  • Dodd, M.; Addison, J.A. Toxicity of methyl tert butyl ether to soil invertebrates (springtails: Folsomia candida, Proisotoma minuta, and Onychiurus folsomi) and lettuce (Lactuca sativa). Environ. Toxicol. Chem. 2010, 29(2), 338–346.
  • Ge, Y.; Schimel, J.P.; Holden, P.A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 2011, 45(4), 1659–1664.
  • Cañas, J.E.; Qi, B.; Li, S.; Maul, J.D.; Cox, S.B.; Das, S.; Green M.J. Acute and reproductive toxicity of nano-sized metal oxides (ZnO and TiO2) to earthworms (Eisenia fetida). J. Environ. Monit. 2011, 13(12), 3351–3357.
  • Heckmann, L.-H.; Hovgaard, M.B.; Sutherland, D.S.; Autrup, H.; Besenbacher, F.; Scott-Fordsmand, J.J. Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 2011, 20(4), 226–233.
  • Hu, C.; Cai, Y.; Wang, W.; Cui, Y.; Li, M. Toxicological effects of multi-walled carbon nanotubes adsorbed with nonylphenol on earthworm Eisenia fetida. Environ. Sci. Proc. Impacts 2013, 5(11), 2125–2130.
  • Shoults-Wilson, W.A.; Reinsch, B.C.; Tsyusko, O.V.; Bertsch, P.M.; Lowry, G.V.; Unrine J.M. Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci. Soc. Am. J. 2011, 75, 1–13.
  • Muñoz, I.; Gómez-Ramos, M.J.; Agüera, A.; Fernández-Alba, A.R.; García-Reyes, J.F.; Molina-Díaz, A. Chemical evaluation of contaminants in wastewater effluents and the environmental risk of reusing effluents in agriculture. Trends Anal. Chem. 2009, 28(6), 676–694.
  • Eriksen, G.S.; Amundsen, C.E.; Bernhoft, A.; Eggen, T.; Grave, K.; Halling-Sørensen, B.; Källqvist, T.; Sogn, T.; Sverdrup, L. Risk assessment of contaminants in sewage sludge applied on Norwegian soils. Norway: Panel on Contaminants in the Norwegian Scientific Committee for Food Safety, 2009. Available at http://www.vkm.no/dav/2ae7f1b4e3.pdf (accessed 14 April 2016).
  • Imfeld, G.; Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: a critical review. Eur. J. Soil Biol. 2012, 49, 22–30.
  • Damalas, C.; Eleftherohorinos, I. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 2011, 8(5), 1402–1419.
  • Andreu, V.; Picó, Y. Determination of pesticides and their degradation products in soil: critical review and comparison of methods. Trends Anal. Chem. 2004, 23(10–11), 772–789.
  • OECD. Guideline for testing of chemicals No. 222, Earthworm reproduction test (Eisenia fetida/andrei). Organization for Economic Co-Operation and Development: Paris, France, 2004.
  • Pereira, J.L.; Antunes, S.C.; Castro, B.B.; Marques, C.R.; Gonçalves, A.M.M.; Gonçalves, F.; Pereira, R. Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology 2009, 18(4), 455–463.
  • ISO. Soil quality. Inhibition of reproduction of Collembola (Folsomia candida). ISO Guideline 11267. International Standardization Organization: Geneva, Switzerland, 1999.
  • OECD. Guideline for the testing of chemicals No. 220. Enchytraeid Reproduction Test. Organization for Economic Cooperation and Development: Paris, France, 2004.
  • ISO. Draft ISO-17512: Soil quality and avoidance test for evaluating the quality of soils and the toxicity of chemicals. Test with earthworms (Eisenia fetida/andrei). Switzerland. 2005.
  • Tiepo, E.N.; Correa A.X.R.; Resgalla, J.C.; Cotelle, S.; Férard, J.-F.; Radetski, C.M. Terrestrial short-term ecotoxicity of a green formicide. Ecotoxicol. Environ. Safe. 2010, 73(5), 939–943.
  • Anastas, P.T. Green chemistry and the role of analytical methodology development. Crit. Rev. Anal. Chem. 1999, 29(3), 167–175.
  • Giri, P.; Pal C. Pharmaceuticals in the environment: a brief review. Adv. Pure Appl. Chem. 2012, 1(4), 73–76.
  • Ter Laak, T.L.; Gebbink, W.A.; Tolls, J. Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environ. Toxicol. Chem. 2006, 25(4), 933–941.
  • Aga, D.S. Fate of Pharmaceuticals in the Environment and in Water Treatment Systems; Taylor and Francis Group: Oxfordshire, UK, 2007.
  • Martín, J.; Camacho-Muñoz, D.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal. J. Hazard. Mater. 2012, 239–240, 40–47.
  • Borgman, O.; Chefetz, B. Combined effects of biosolids application and irrigation with reclaimed wastewater on transport of pharmaceutical compounds in arable soils. Water Res. 2013, 47(10), 3431–3443.
  • Chen, F.; Ying, G.G.; Kong, L.X.; Wang, L.; Zhao, J.-L.; Zhou, L.-J.; Zhang, L.-J. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. Environ. Pollut. 2011, 159(6), 1490–1498.
  • Du, L.; Liu, W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Dev. 2012, 32(32), 309–327.
  • Wei, X.; Wu, S.C.; Nie, X.P.; Yediler, A.; Wong, M.H. The effects of residual tetracycline on soil enzymatic activities and plant growth. J. Environ. Sci. Health Part B 2009, 44(5), 461–471.
  • Liu, F.; Ying, G.-G.; Tao, R.; Zhao, J.-L.; Yang, J.F.; Zhao, L.-F. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ. Pollut. 2009, 157, 1636–1642.
  • Girardi, C.; Greve, J.; Lamshoft, M.; Fetzer, I.; Miltner, A.; Schaffer, A.; Kastner, M. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. J. Hazard. Mater. 2011, 198, 22–30.
  • Wu, C.; Spongberg, A.L.; Witter, J.D.; Sridhar, B.B.M. Transfer of wastewater associated pharmaceuticals and personal care products to crop plants from biosolids treated soil. Ecotoxicol. Environ. Saf. 2012, 85, 104–109.
  • Carter, L.J.; Harris, E.H.; Williams, M.; Ryan, J.J.; Kookana, R.S.; Boxall, A.B.A. Fate and uptake of pharmaceuticals in soil-plant systems. J. Agric. Food Chem. 2014, 62(4), 816–825.
  • VICH. Environmental impact assessments (EIAs) for veterinary medical products (VMPs): Phase I. Report of WHO consultation, Oslo, Norway, 2000. Available at www:\\vich.eudra.org (accessed Apr 2016).
  • Kinney, C.; Furlong, E.; Kolpin, D.; Burkhardt, M.; Zaugg, S.; Werner, S.; Bossio, J.; Benotti, M. Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Environ. Sci. Technol. 2008, 42(6), 1863–1870.
  • Prosser, R.S.; Lissemore, L.; Topp, E.; Sibley, P.K. Bioaccumulation of triclosan and triclocarban in plants grown in soils amended with municipal dewatered biosolids. Environ. Toxicol. Chem. 2014, 33(5), 975–984.
  • Ying, G.G.; Kookana, R.S. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ. Int. 2007, 33(2), 199–205.
  • Topp, E.; Hendel, J.G.; Lu, Z.; Chapman, R. Biodegradation of caffeine in agricultural soils. Can. J. Soil Sci. 2006, 86(3), 533–544.
  • Calderón-Preciado, D.; Matamoros, V.; Bayona, J.M. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network. Sci. Total Environ. 2011, 412–413, 14–19.
  • Buerge, I.J.; Keller, M.; Buser, H.-R.; Muller, M.D.; Poigner, T. Saccharin and other artificial sweeteners in soils: estimated inputs from agriculture and households, degradation, and leaching to groundwater. Environ. Sci. Technol. 2011, 45(2), 615–621.
  • Abdelgaleil, S.M.; Mohamed, M.I.E.; Badawy, M.E.I.; El-Arami, S. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol. 2009, 35(5), 518–525.
  • Huang, B.; Lei, C.; Wei, C.; Zeng, G. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies. Environ. Int. 2014, 71, 118–138.
  • Segev, O.; Kushmaro, A.; Brenner, A. Environmental impact of flame retardants (persistence and biodegradability). Int. J. Environ. Res. Public Health 2009, 6(6), 478–491.
  • Tang, J.; Feng, J.; Li, X.; Li, G. Levels of flame retardants HBCD, TBBPA and TBC in surface soils from an industrialized region of East China. Environ. Sci. Processes Impacts 2014, 16(5), 1015–1021.
  • Sverdrup, L.E.; Hartnik, T.; Mariussen, E.; Jensen, J. Toxicity of three halogenated flame retardants to nitrifying bacteria, red clover (Trifolium pratense), and a soil invertebrate (Enchytraeus crypticus). Chemosphere 2006, 64(1), 96–103.
  • Xie, X.; Wu, Y.; Zhu, M.; Zhang, Y.K.; Wang, X. Hydroxyl radical generation and oxidative stress in earthworms (Eisenia fetida) exposed to decabromodiphenyl ether (BDE-209). Ecotoxicology 2011, 20(5), 993–999.
  • Hardy, M.L.; Aufderheide, J.; Krueger, H.O.; Mathews, M.E.; Porch, J.R.; Schaefer, E.C.; Stenzel, J.I.; Stedeford, T. Terrestrial toxicity evaluation of decabromodiphenyl ethane on organisms from three trophic levels. Ecotoxicol. Environ. Saf. 2011, 74(4), 703–710.
  • Jaspers, V.L.B.; Covaci, A.; Voorspoels, S.; Dauwe, T.; Eens, M.; Schepens, P. Brominated flame retardants and organochlorine pollutants in aquatic and terrestrial predatory birds of Belgium: Levels, patterns, tissue distribution and condition factors. Environ. Pollut. 2006, 139(2), 340–352.
  • Fent, G.; Hein, W.J.; Moendel, M.J.; Kubiak, R. Fate of 14C-bisphenol A in soils. Chemosphere 2003, 51(8), 735–746.
  • Mao, Z.; Zheng, X.-F.; Zhang, Y.-Q.; Tao, X.-X.; Li, Y.; Wang, W. Occurrence and biodegradation of nonylphenol in the environment, Int. J. Mol. Sci. 2012, 13(1), 491–505.
  • Domene, X.; Chelinho, S.; Sousa, J.P. Effects of nonylphenol on a soil community using microcosms. J Soils Sedim. 2010, 10(10), 556–567.
  • An, Y.-J. Assessing soil ecotoxicity of methyl tert-butyl ether using earthworm bioassay; closed soil microcosm test for volatile organic compounds. Environ. Pollut. 2005, 134(2), 181–186.
  • JRC – Joint Research Centre – Institut of Environment and Sustainaible. Progress in the Management of Contaminated Sites in Europe, by Liedekerke, M.; Prokop, G.; Rabl-Berger, S.; Kibblewhite, M.; Louwagie, G., EUR 26376.
  • Wrona, M.; Pezo, D.; Nerin, C. Rapid analytical procedure for determination of mineral oils in edible oil by GC–FID. Food Chem. 2013, 141(4), 3993–3999.
  • Van Gestel, C.A.M.; Van Der Waarde, J.J.; Derksen, J.G.M.; Van Der Hoek, E.E.; Veul, M.F.X.W.; Bouwens, S.; Rusch, B.; Kronenburg, R.; Stokman, G.N.M. The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environ. Toxicol. Chem. 2001, 20(7), 1438–1449.
  • Tamada, I.S.; Lopes, P.R.M.; Montagnolli, R.N.; Bidoia, E.D. Biodegradation and toxicological evaluation of lubricant oils. Braz. Arch. Biol. Technol. 2012, 55(6), 951–956.
  • Nayak, S.; Mishra, C.S.; Guru, B.C.; Rath, M. Effect of phosphogypsum amendment on soil physico-chemical properties, microbial load and enzyme activities. J. Environ. Biol. 2011, 32(5), 613–617.
  • Enamorado, S.; Abril, J.M.; Delgado, A.; Más, J.L.; Polvillo, O.; Quintero, J.M. Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain. J. Hazard. Mater. 2014, 266, 122–131.
  • Hentati, O.; Abrantes, N.; Caetano, A.L.; Bouguerra, S.; Gonçalves, F.; Rombke, J.; Pereira, R. Phosphogypsum as a soil fertilizer: ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. J. Hazard. Mater. 2015, 294, 80–89.
  • EC - Commission Recommendation of 18 October 2011 on the definition of nanomaterial, 20.10.2011, Official Journal of the European Union (2011/696/EU). Available at https://ec.europa.eu/research/industrial_technologies/pdf/policy/commission-recommendation-on-the-definition-of-nanomater-18102011_en.pdf ( accessed Apr 2016).
  • Bystrzejewska-Piotrowska, G.; Golimowski, J.; Urban, P.L. Nanoparticles: their potential toxicity, waste and environmental management. Waste Manage. 2009, 29(9), 2587–2595.
  • Elsaesser, A.; Howard, C.V. Toxicology of nanoparticles. Adv. Drug Del. Rev. 2012, 64(2), 129–137.
  • Bhatt, I.; Tripathi, B.N. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 2011, 82(3), 308–317.
  • Tourinho, P.S.; van Gestel, C.; Lofts, S.; Svendsen, C.; Soares, A.M.V.M.; Loureiro, S. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 2012, 31(8), 1679–1692.
  • Pereira, R.; Rocha-Santos, T.A.P.; Antunes, F.E.; Rasteiro, M.G.; Ribeiro, R.; Gonçalves F.; Soares, A.M.V.M.; Lopes, I. Screening evaluation of the ecotoxicity and genotoxicity of soils contaminated with organic and inorganic nanoparticles: the role of ageing. J. Hazard. Mater. 2011, 194, 345–354.
  • Nogueira, V.; Lopes, I.; Rocha-Santos, T.; Santos, A.L.; Rasteiro, G.M.; Antunes, F.; Gonçalves, F.; Soares, A.M.V.M.; Cunha, A.; Almeida, A.; Gomes, N.C.M.; Pereira, R. Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci. Total Environ. 2012, 424, 344–350.
  • Rodrigues, D.F.; Jaisi, D.P.; Elimelech, M. Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: Implications for nutrient cycling in soil. Environ. Sci. Technol. 2013, 47(1), 625–633.
  • Shrestha, B.; Acosta-Martinez, V.; Cox, S.B.; Green, M.J.; Li, S.; Cañas-Carrell, J.E. An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning. J. Hazard. Mater. 2013, 261, 188–197.
  • Jin, L.; Son, Y.; DeForest, J.L.; Kang, Y.J.; Kimd, W.; Chung, H. Single-walled carbon nanotubes alter soil microbial community composition. Sci. Total Environ. 2014, 466–467, 533–538.
  • Miralles, P.; Church, T.L.; Harris, A.T. Toxicity uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol. 2012, 46(7), 9224–9239.
  • Lee, C.W.; Mahendra, S.; Zodrow, K.; Li, D.; Tsai, Y.-C.; Braam, J.; Alvarez, P.J.J. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem. 2012, 29(3), 669–675.
  • Du, W.; Sun, Y.; Ji, R.; Zhu, J.; Wu, J.; Guo, H. TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J. Environ. Monit. 2011, 13, 822–828.
  • Ghodake, G.; Seo, Y.D.; Lee, D.S. Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J. Hazard. Mater. 2011, 186(1), 952–955.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.