Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 11
713
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Removal of PFOA in groundwater by Fe0 and MnO2 nanoparticles under visible light

, , , , &
Pages 1048-1054 | Received 09 Dec 2016, Accepted 26 Apr 2017, Published online: 24 Jul 2017

References

  • Emerging contaminants – perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). United States Environmental Protection Agency. EPA, March 2014.
  • Xiao, F.; Simcik, M.F.; Halbach, T.R.; Gulliver, J.S. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: migration and implications for human exposure. Water Res. 2015, 72, 64–74.
  • Drinking water health advisory for perfluorooctanoic acid (PFOA). United States Environmental Protection Agency. May 2016.
  • Andrews, D. Is your drinking water contaminated with toxic non-stick chemicals? Environmental Working Group. Ewg, 27 August 2015.
  • Chen, J.; Zhang, P.; Liu, J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. J. Environ. Sci. 2007, 19, 387–390.
  • Lin, H.; Niu, J.; Ding, S.; Zhang, L. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes. Water Res. 2012, 46(7), 2281–2289.
  • Lin, J.C.; Hu, C.Y.; Lo, S.L. Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment. Ultrason. Sonochem. 2016, 28, 130–135.
  • Zhang, Z.; Chen, J.J.; Lyu, X.J.; Yin, H.; Sheng, G.P. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution. Sci. Rep. 2014, 4, 1–6.
  • Mitchell, S.M.; Ahmad, M.; Teel, A.L.; Watts, R.J. Degradation of perluorooctanoic acid by reactive species generated through catalyzed H2O2 propagation reactions. Environ. Sci. Technol. 2014, 1, 117–121.
  • Yu, Q.; Zhang, R.; Deng, S.; Huang, J.; Yu, G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Res. 2009, 43, 1150–1158.
  • Ochoa-Herrera, V.; Sierra-Alvarez, R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge. Chemosphere. 2008, 72, 1588–1593.
  • Li, X.; Zhao, H.; Quan, X.; Chen, S.; Zhang, Y.; Yu, H. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents. J. Hazard. Mater. 2011, 186, 407–415.
  • Wang, F.; Shih, K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations. Water Res. 2011, 45, 2925–2930.
  • Zhang, W.X.; Elliott, D.W. Applications of iron nanoparticles for groundwater remediation. Remed. J. 2006, 16, 7–21.
  • Lowry, G.V. Nanomaterials for groundwater remediation. In Environmental Nanotechnology, Applications and Impacts of Nanomaterials; Wiesner, M.R.; Bottero, J.Y., Eds.; McGraw-Hill: New York, 2007; 297–336.
  • Zhang, W.X. Nanoscale iron particles for environmental remediation: an overview. J Nanopart. Res. 2003, 5, 323–332.
  • Auffan, M.; Shipley, H.J.; Yean, S.; Kan, A.T.; Tomson, M.; Rose, J.; Bottero, J.Y. Nanomaterials as adsorbents. In Environmental Nanotechnology, Applications and Impacts of Nanomaterials; Wiesner, M.R.; Bottero, J.Y., Eds.; McGraw-Hill: New York, 2007; 371–394.
  • Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091.
  • Huang, Y.; Keller, A.A. Magnetic nanoparticle adsorbents for emerging organic contaminants. ACS Sustainable Chem. Eng. 2013, 1(7), 731–736.
  • Kanel, S.R.; Manning, B.; Charlet, L.; Choi, H. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 2005, 39, 1291–1298.
  • Ponder, S. M.; Darab, J. C.; Mallouk, T. E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zerovalent iron. Environ. Sci. Technol. 2000, 34, 2564–2569.
  • Saravanakumar, K.; Muthuraj, V.; Vadivel, S. Constructing novel Ag nanoparticles anchored on MnO2 nanowires as an efficient visible light driven photocatalyst. RSC Adv. 2016, 6, 61357–61366.
  • Li, F.; Liu, C.; Liang, C.; Li, X.; Zhang, L. The oxidative degradation of 2-mercaptobenzothiazole at the interface of -MnO2 and water. J. Hazard. Mater. 2008, 154, 1098–1105.
  • Mahmoodi, N.M.; Hosseinabadi-Farahani, Z.; Chamani, H. Nanostructured adsorbent (MnO2): synthesis and least square support vector machine modeling of dye removal. Desalin. Water Treat. 2016, 57, 21524–21533.
  • Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol. C: Photochem. Rev. 2005, 6, 186–205.
  • Park, H.; Choi, W. Visible light and Fe(III)-mediated degradation of Acid Orange 7 in the absence of H2O2. J. Photochem. Photobiol. A - Chem. 2003, 159(3), 241–247.
  • Bandara, J.; Mielczarski, J.A.; Lopez, A.; Kiwi, J. Sensitized degradation of chlorophenols on iron oxides induced by visible light—comparison with titanium oxide. Appl. Catal. B-Environ. 2001, 34(4), 321–333.
  • Liu, G.; Deng, Q.; Wang, H.Q.; Ng, D.H.L.; Kong, M.G.; Cai, W.P.; Wang, G.Z. Micro/nanostructured alpha-Fe2O3 spheres: synthesis, characterization, and structurally enhanced visible-light photocatalytic activity. J. Mater. Chem. 2012, 22(19), 9704–9713.
  • Kuan, W.H.; Chen, C.Y.; Hu, C.Y. Removal of methylene blue from water by gamma-MnO2. Water Sci. Technol. 2011, 64(4), 899–903.
  • Zhang, L.; Lian, J.; Wu, L.Y.; Duan, Z.R.; Jiang, J.; Zhao, L.J. Synthesis of a thin-layer MnO2 nanosheet-coated Fe3O4 nanocomposite as a magnetically separable photocatalyst. Langmuir. 2014, 30(23), 7006–7013.
  • Cheng, M.; Ma, W.; Li, J.; Huang, Y.; Zhao, J. Visible-light-assisted degradation of dye pollutants over Fe(III)-loaded resin in the presence of H2O2 at neutral pH values. Environ. Sci. Technol. 2004, 38, 1569–1575.
  • Pereira, M.C.; Oliveira, L.C.A.; Murad, E. Iron oxide catalysts: Fenton and Fenton-like reactions—a review. Clay Miner. 2012, 47(3).
  • Zhou, X.; Yang, H.; Wang, C.; Mao, X.; Wang, Y.; Yang, Y.; Liu, G. Visible light induced photocatalytic degradation of rhodamine B on one-dimensional iron oxide particles. J. Phys. Chem. C. 2010, 114(40), 17051–17061.
  • Zhang, Y.X.; Guo, X.L.; Huang, M.; Hao, X.D.; Yuan, Y.; Hua, C. Engineering birnessite-type MnO2 nanosheets on fiberglass for pH-dependent degradation of methylene blue. J. Phys. Chem. Solids. 2015, 83, 40–46.
  • Arvaniti, O.S.; Hwang, Y.; Andersen, H.R.; Stasinakis, A.S.; Thomaidis, N.S.; Aloupi, M. Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron. Chem. Eng. J. 2015, 262, 129–133.
  • Gong Y.; Wang L.; Liu J.; Tang J.; Zhao D. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles. Sci. Total. Environ. 2016, 562, 191–200.
  • Yang, X.; Ye, C.; Liu, Y.; Zhao, F.J. Accumulation and phytotoxicity of perfluorooctanoic acid in the model plant species Arabidopsis thaliana. Environ. Pollut. 2015, 206, 560–566.
  • Muller, C.E.; Lefevre, G.H.; Timofte, A.E.; Hussain, F.A.; Sattely, E.S.; Luthy, R.G. Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system. Environ. Toxicol. Chem. 2016, 35(5), 1138–1147, 2016.
  • Lee, C.W.; Mahendra, S.; Zodrow, K.; Li, D.; Tsai, Y.C.; Braam, J.; Alvarez. P.J.J. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem. 2010, 29(3), 669–675.
  • Marusenko, Y.; Shipp, J.; Hamilton, G.A.; Morgan, J.L.L.; Keebaugh, M.; Hill, H.; Dutta, A.; Zhuo, X.; Upadhyay, N.; Hutchings, J. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana. Environ. Pollut. 2013, 174, 150–156.
  • Hauser, A.K.; Mathias, R.; Anderson, K.W.; Hilt, J.Z. The effects of synthesis method on the physical and chemical properties of dextran coated iron oxide nanoparticles. Mater. Chem. Phys. 2015, 160, 177–186.
  • Raj, B.G.S.; Asiri, A.M.; Qusti, A.H.; Wu, J.J.; Sambandam, A. Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors. Ultrasonics Sonochem. 2014, 21, 1933–1938.
  • Liu, D.; Xiu, Z.; Liu, F.; Wu, G.; Adamson, D.; Newell, C.; Vikeslande, P.; Tsaic, A.L.; Alvarez, P.J.J. Perfluorooctanoic acid degradation in the presence of Fe(III) under natural sunlight. J. Hazard. Mater. 2013, 262, 456–463.
  • Peng, X.; Ichinose, I. Manganese oxyhydroxide and oxide nanofibers for high efficiency degradation of organic pollutants. Nanotechnology 2011, 22, 1–7.
  • Gao, X.; Chorover, J. Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy. Environ. Chem. 2012, 9, 148–157.
  • Lin, H.; Wang, Y.; Niu, J.; Yue, Z.; Huang, Q. Efficient sorption and removal of perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by electrocoagulation. Environ. Sci. Technol. 2015, 49, 10562–10569.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.