Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 11
808
Views
52
CrossRef citations to date
0
Altmetric
Original Articles

Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization

, &
Pages 1063-1072 | Received 17 Feb 2017, Accepted 26 Apr 2017, Published online: 24 Jul 2017

References

  • Báez-Vásquez, M.A.; Demain, A.L. Ethanol, biomass, and Clostridia. In Bioenergy; Wall, J.D.; Harwood, C.S.; Demain, A., Eds.; ASM Press: Washington, DC, 2008; 49–54.
  • Cavalett, O.; Junqueira, T.L.; Dias, M.O.S.; Jesus, C.D.F.; Mantelatto, P.E.; Cunha, M.P.; Franco, H.J.C.; Cardoso, T.F.; Maciel Filho, R.; Rossell, C.E.V.; Bonomi, A. Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Technol. Environ. 2012, 14(3), 399–410.
  • Fuess, L.T.; Garcia, M.L. Implications of stillage land disposal: a critical review on the impacts of fertigation. J. Environ. Manage. 2014, 145, 210–229.
  • CONAB. Acompanhamento da Safra Brasileira: Cana-de-açúcar, Quarto Levantamento, Abril/2015 [Monitoring of the Brazilian Crop: Sugarcane, Fourth Survey, April/2015]; CONAB: Brasília, Brazil, 2015; 1–29.
  • EIA. Monthly Energy Review, June 2016; DOE/EIA-0035(2016/06); U.S. Energy Information Administration: Washington, DC, 2016; 1–224. https://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf. Accessed 26 June 2016.
  • BNDES; CGEE. Bioetanol de Cana-de-açúcar: Energia Para o Desenvolvimento Sustentável [Bioethanol from Sugarcane: Energy for Sustainable Development], 1st ed.; BNDES: Rio de Janeiro, Brazil, 2008, 316.
  • Dias, M.O.S.; Junqueira, T.L.; Cavalett, O.; Pavanello, L.G.; Cunha, M.P.; Jesus, C.D.F.; Maciel Filho, R.; Bonomi, A. Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Appl. Energy 2013, 109, 72–78.
  • Fuess, L.T.; Garcia, M.L. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. J. Environ. Manage. 2015, 162, 102–114.
  • Goldemberg, J.; Coelho, S.T.; Guardabassi, P. The sustainability of ethanol production from sugarcane. Energy Policy 2008, 36(6), 2086–2097.
  • España-Gamboa, E.; Mijangos-Cortes, J.; Barahona-Perez, L.; Dominguez-Maldonado, J.; Hernández-Zarate, G.; Alzate-Gaviria, L. Vinasses: characterization and treatments. Waste Manage. Res. 2011, 29(12), 1235–1250.
  • Christofoletti, C.A.; Escher, J.P.; Correia, J.E.; Marinho, J.F.; Fontanetti, C.S. Sugarcane vinasse: environmental implications of its use. Waste Manage. 2013, 33(12), 2752–2761.
  • Akram, M.; Tan, C.K.; Garwood, R.; Thai, S.M. Vinasse – A potential biofuel – Cofiring with coal in a fluidised bed combustor. Fuel 2015, 158, 1006–1015.
  • Moraes, B.S.; Zaiat, M.; Bonomi, A. Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renew. Sustain. Energy Rev. 2015, 44, 888–903.
  • Brito, F.L.; Rolim, M.M.; Pedrosa, E.M.R. Efeito da aplicação de vinhaça nas características de solos da zona da mata de Pernambuco [Effect of vinasse application in chemical characteristics of soils from forest zone of Pernambuco]. Agrária 2009, 4(4), 456–462.
  • Uyeda, C.A.; Miranda, J.H.; Duarte, S.N.; Medeiros, P.R.F.; Dias, C.T.S. Influence of vinasse application in hydraulic conductivity of three soils. Eng. Agríc. 2013, 33(4), 689–698.
  • Zolin, C.A.; Paulino, J.; Bertonha, A.; Freitas, P.S.L.; Folegatti, M.V. Estudo exploratório do uso da vinhaça ao longo do tempo. I. Características do solo [Exploratory study of the stillage use along the time. I. Characteristics of the soil]. Rev. Bras. Eng. Agríc. Ambient. 2011, 15(1), 22–28.
  • Guerreiro, L.F.; Rodrigues, C.S.D.; Duda, R.M.; Oliveira, R.A.; Boaventura, R.A.R.; Madeira, L.M. Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton's oxidation. J. Environ. Manage. 2016, 181, 237–248.
  • Moran-Salazar, R.G.; Sanchez-Lizarraga, A.L.; Rodriguez-Campos, J.; Davila-Vazquez, G.; Marino-Marmolejo, E.N.; Dendooven, L.; Contreras-Ramos, S.M. Utilization of vinasses as soil amendment: consequences and perspectives. Springerplus 2016, 5(1):1007.
  • APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA: Washington, DC, 2012, 1496.
  • EPA. Determination of Total Kjeldahl Nitrogen by Semi-automated Colorimetry, Revision 2.0; Method 351.2; U.S. Environmental Protection Agency: Cincinnati, OH, 1993.
  • EPA. Microwave Assisted Acid Digestion of Aqueous Samples and Extracts, Revision 1, Method 3015A; U.S. Environmental Protection Agency: Cincinnati, OH, 2007.
  • EPA. Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 4.4, Method 200.7; U.S. Environmental Protection Agency: Cincinnati, OH, 1994.
  • CETESB. Vinhaça – Critérios e Procedimentos Para Aplicação no Solo Agrícola. [Stillage – Criteria and Procedures for Agricultural Soil Application], Norma P4.231, 3rd ed.; CETESB: São Paulo, 2015.
  • Brasil. Resolução Conama n. 430, de 13 de maio de 2011. Dispõe Sobre as Condições e Padrões de Lançamento de Efluentes, Complementa e Altera a Resolução n, 357, de 17 de Março de 2005, do Conama. Conama: Brasília, 2011.
  • WHO. Guidelines for the Safe Use of Wastewater, Excreta and Greywater; Volume II: Wastewater Use in Agriculture. Geneva, Switzerland: WHO, 2006, 196.
  • EPA. 2012 Guidelines for Water Reuse; EPA/600/R-12/618; U.S. Environmental Protection Agency: Cincinnati, OH, 2012.
  • Arienzo, M.; Christen, E.W.; Quayle, W.; Kumar, A. A review of the fate of potassium in the soil-plant system after land application of wastewaters. J. Hazard. Mater. 2009, 164(2–3), 415–422.
  • Rolim, M.M.; Lyra, M.R.C.C.; Duarte, A.S.; Medeiros, P.R.F.; França e Silva, E.F.; Pedrosa, E.M.R. Influência de Uma Lagoa de Distribuição de Vinhaça na Qualidade da Água Freática [Influence of a Vinasse-distributing Lake on Water Quality of the Groundwater]. Rev. Ambient. Água. 2013, 8(1), 155–171.
  • CGEE. Bioetanol Combustível: Uma Oportunidade Para o Brasil [Fuel Bioethanol: An Opportunity for Brazil], CGEE: Brasília, Brazil, 2009, 536.
  • Silva, G.A. Avaliação das Tecnologias de Disposição de Vinhaça de Cana-de-açúcar Quanto ao Aspecto de Desenvolvimento Ambiental e Econômico [Evaluation of Technologies FOR THE Disposal of Sugarcane Vinasse in Terms of Environmental and Economic Development] (Doctoral thesis). São Carlos, SP, Brazil: University of São Paulo, 2012.
  • Pathak, H.; Joshi, H.C.; Chaudhary, A.; Chaudhary, R.; Kalra, N.; Dwiwedi, M.K. Soil amendment with distillery effluent for wheat and rice cultivation. Water Air Soil Pollut. 1999, 133(1), 133–140.
  • Banu, J.R.; Kaliappan, S.; Rajkumar, M.; Beck, D. Treatment of spent wash in anaerobic mesophilic suspended growth reactor (AMSGR). J. Environ. Biol. 2006, 27(1), 111–117.
  • Hati, K.; Biswas, A.; Bandyopadhyay, K.; Misra, A. Soil properties and crop yields on a vertisol in India with application of distillery effluent. Soil Till. Res. 2007, 92(1–2), 60–68.
  • Kumar, S.G.; Gupta, S.K.; Singh, G. Biodegradation of distillery spent wash in anaerobic hybrid reactor. Water Res. 2007, 41(4), 721–730.
  • Acharya, B.K.; Mohana, S.; Madamwar, D. Anaerobic treatment of distillery spent wash – A study on upflow anaerobic fixed film bioreactor. Bioresour. Technol. 2008, 99(11), 4621–4626.
  • Biswas, A.K.; Mohanty, M.; Hati, K.M.; Misra, A.K. Distillery effluents effect on soil organic carbon and aggregate stability of a Vertisol in India. Soil Till. Res. 2009, 104(2), 241–246.
  • Alkan-Ozkaynak, A.; Karthikeyan, K.G. Anaerobic digestion of thin stillage for energy recovery and water reuse in corn-ethanol plants. Bioresour. Technol. 2011, 102(21), 9891–9896.
  • Nasr, N.; Elbeshbishy, E.; Hafez, H.; Nakhla, G.; El Naggar, M.H. Bio-hydrogen production from thin stillage using conventional and acclimatized anaerobic digester sludge. Int. J. Hydrogen Energy 2011, 36(20), 12761–12769.
  • Andalib, M.; Hafez, H.; Elbeshbishy, E.; Nakhla, G.; Zhu, J. Treatment of thin stillage in a high-rate anaerobic fluidized bed bioreactor (AFBR). Bioresour. Technol. 2012, 121, 411–418.
  • Wilkinson, A.; Kennedy, K.J. Anaerobic digestion of corn ethanol thin stillage in batch and by high-rate down-flow fixed film reactors. Water Sci. Technol. 2012, 66(9), 1834–1841.
  • Vlissidis, A.; Zouboulis, A.I. Thermophilic anaerobic digestion of alcohol distillery wastewaters. Bioresour. Technol. 1993, 43(2), 131–140.
  • Jiménez, A.M.; Borja, R.; Martín, A. Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater. Process Biochem. 2003, 38(9), 1275–1284.
  • Lutosławski, K.; Ryznar-Luty, A.; Cibis, E.; Krzywonos, M.; Miśkiewicz, T. Biodegradation of beet molasses vinasse by a mixed culture of micro organisms: effect of aeration conditions and pH control. J. Environ. Sci. (China) 2011, 23(11), 1823–1830.
  • Auerswald, K.; Kainz, M.; Angermüller, S.; Steindl, H. Influence of exchangeable potassium on soil erodibility. Soil Use Manage. 1996, 12(3), 117–121.
  • Tsiropoulos, I.; Faaij, A.P.C.; Lundquist, L.; Schenker, U.; Briois, J.F.; Patel, M.K. Life cycle impact assessment of bio-based plastics from sugarcane ethanol. J. Clean. Prod. 2015, 90, 114–127.
  • Batalha, B.H.L.; Parlatore, A.C. Controle da Qualidade de Água Para Consumo Humano: Bases Conceituais e Operacionais [Quality Control of Water for Human Consumption: Conceptual and Operational Bases], CETESB: São Paulo, Brazil, 1993, 198.
  • Tejada, M.; Gonzalez, J.L. Effects of two beet vinasse forms on soil physical properties and soil loss. Catena 2006, 68(1), 41–50.
  • Tejada, M.; Moreno, J.L.; Hernandez, M.T.; Garcia, C. Application of two beet vinasse forms in soil restoration: effects on soil properties in an arid environment in southern Spain. Agric. Ecosyst. Environ. 2007, 119(3–4), 289–298.
  • Lamers, L.P.M.; Govers, L.L.; Janssen, I.C.J.M.; Geurts, J.J.M.; Van der Welle, M.E.W.; Van Katwijk, M.M.; Van der Heide, T.; Roelofs, J.G.M.; Smolders, A.J.P. Sulfide as a soil phytotoxin – A review. Front. Plant Sci. 2013, 4, 268.
  • Mariano, A.P.; Crivelaro, S.H.R.; Angelis, D.F.; Bonotto, D.M. The use of vinasse as an amendment to ex-situ bioremediation of soil and groundwater contaminated with diesel oil. Braz. Arch. Biol. Technol. 2009, 52(4), 1043–1055.
  • Gunkel, G.; Kosmol, J.; Sobral, M.; Rohn, H.; Montenegro, S., Aureliano, J. Sugar cane industry as a source of water pollution – Case study on the situation in Ipojuca river, Pernambuco, Brazil. Water Air Soil Pollut. 2007, 180(1–4), 261–269.
  • Brasil. Portaria: GM MINTER n. 323, de 29 de novembro de 1978, MINTER: Brasília, 1978.
  • Carmo, J.B.; Filoso, S.; Zotelli, L.C.; Sousa Neto, E.R.; Pitombo, L.M.; Duarte-Neto, P.J.; Vargas, V.P.; Andrade, C.A.; Gava, G.J.C.; Rossetto, R.; Cantarella, H.; Neto, A.E.; Martinelli, L.A. Infield greenhouse gas emissions from sugarcane soils in Brazil: Effects from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioenergy 2013, 5(3), 267–280.
  • Oliveira, B.G.; Carvalho, J.L.N.; Cerri, C.E.P.; Cerri, C.C.; Feigl, B.J. Soil greenhouse gas fluxes from vinasse application in Brazilian sugarcane areas. Geoderma 2013, 200–201, 77–84.
  • Nandan, R.; Tondwalkar, V.; Ray, P.K. Biomethanation of spent wash: Heavy metal inhibition of methanogenesis in synthetic medium. J. Ferment. Bioeng. 1990, 69(5), 276–282.
  • Chandra, R.; Yadav, S.; Bharagava, R.N.; Murthy, R.C. Bacterial pretreatment enhances removal of heavy metals during treatment of post-methanated distillery effluent by Typha angustata L. J. Environ. Manage. 2008, 88(4), 1016–1024.
  • Chandra, R.; Bharagava, R.N.; Yadav, S.; Mohan, D. Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J. Hazard. Mater. 2009, 162(2–3), 1514–1521.
  • Tchobanoglous, G.; Burton, F.L.; Stensel, H.D.; Metcalf & Eddy. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw-Hill Inc.: New York, 2003, 1819.
  • Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: a review. J. Environ. Manage. 2011, 92(3), 407–418.
  • Souza, T.; Hencklein, F.A.; Angelis, D.F.; Fontanetti, C.S. Clastogenicity of landfarming soil treated with sugar cane vinasse. Environ. Monit. Assess. 2013, 185(2), 1627–1636.
  • Costa, A.C.S.; Almeida, V.C.; Lenzi, E.; Nozaki, J. Determinação de Cobre, Alumínio e Ferro em Solos Derivados do Basalto Através de Extrações Seqüenciais [Determination of copper, aluminum, and iron in basaltic soils by sequential extractions]. Quím. Nova 2002, 25(4), 548–552.
  • Costa, F.J.C.B.; Rocha, B.B.M.; Viana, C.E.; Toledo, A.C. Utilization of vinasse effluents from an anaerobic reactor. Water Sci. Technol. 1986, 18(12), 135–141.
  • Moraes, B.S.; Junqueira, T.L.; Pavanello, L.G.; Cavalett, O.; Mantelatto, P.E.; Bonomi, A.; Zaiat, M. Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense? Appl. Energy 2014, 113, 825–835.
  • Yavuz, Y. EC and EF processes for the treatment of alcohol distillery wastewater. Sep. Purif. Technol. 2007, 53(1), 135–140.
  • Zayas, T.; Rómero, V.; Salgado, L.; Meraz, M.; Morales, U. Applicability of coagulation/flocculation and electrochemical processes to the purification of biologically treated vinasse effluent. Sep. Purif. Technol. 2007, 57(2), 270–276.
  • Rodrigues, I.J.; Fuess, L.T.; Biondo, L.; Santesso, C.A.; Garcia, M.L. Coagulation-flocculation of anaerobically treated sugarcane stillage. Desalin. Water Treat. 2014, 52(22–24), 4111–4121.
  • Seixas, F.L.; Gimenes, M.L.; Fernandes-Machado, N.R.C. Tratamento da Vinhaça por Adsorção em Carvão de Bagaço de Cana-de-açúcar [Treatment of Vinasse by Adsorption on Carbon from Sugar cane Bagasse]. Quím. Nova 2016, 39(2), 172–179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.