Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 11
118
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Speciation of As in environmental samples using the nano-TiO2/PCHG-FAAS online system

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1089-1098 | Received 02 Mar 2017, Accepted 24 May 2017, Published online: 25 Aug 2017

References

  • Guerin, T.; Astruc, A.; Astruc, M. Speciation of arsenic and selenium compounds by HPLC hyphenated to specific detectors: a review of the main separation techniques. Talanta 1999, 50, 1–24.
  • Mir, K.A.; Rutter, A.; Koch, I.; Smith, P.; Reimer, K.J.; Poland, J.S. Extraction and speciation of arsenic in plants grown on arsenic contaminated soils. Talanta 2007, 72(4), 1507–1518.
  • Wrobel, K.; Caruso, J.A. Pretreatment procedures for characterization of arsenic and selenium species in complex samples utilizing coupled techniques with mass spectrometric detection. J. Anal. Bioanal. Chem. 2005, 381(2), 317–331.
  • Kot, A.; Namiesnik, J. The role of speciation in analytical chemistry. Trends Anal. Chem. 2000, 19, 69–79.
  • Lobinski, R. Speciation - targets, analytical solutions and markets. Spectrochim. Acta B 1998, 53, 177–185.
  • Matusiewicz, H.; Krawczyk, M. Determination of total antimony and inorganic antimony species by hydride generation in situ trapping flame atomic absorption spectrometry: a new way to (ultra)trace speciation analysis. J. Anal. At. Spectrom. 2008, 23, 43–53.
  • Liu, Q. Determination of mercury and methylmercury in seafood by ion chromatography using photo-induced chemical vapor generation atomic fluorescence spectrometric detection. Microchem. J. 2010, 95, 255-.
  • Dedina, J.; Tsalev, D.L. Hydride Generation Atomic Absorption Spectrometry, John Wiley & Sons: Chichester, 1995.
  • Deng, D.; Zhou, J.; Ai, X.; Yang, L.; Hou, X.; Zheng, C. Ultrasensitive determination of selenium by atomic fluorescence spectrometry using nano-TiO2 pre-concentration and in situ hydride generation. J. Anal. At. Spectrom. 2012, 27, 270–275.
  • Paschoalino, M. P.; Marcone, G. P. S; Jardim, W. F. Os nanomateriais e a questão ambiental. Quím. Nova 2010, 33, 421–430.
  • He, Y.; Hou, X.; Zheng, C. Critical evaluation of the application of photochemical vapor generation in analytical atomic spectrometry. Anal. Bioanal. Chem. 2007, 388, 769–774.
  • Nogueira, R. F. P.; Jardim, W. F. A fotocatálise heterogênia e sua aplicação ambiental. Quím. Nova 1998, 21(1), 69–72.
  • Zheng, C.; Li, Y.; He, Y.; Ma, Q.; Hou, X. Photo-induced chemical vapor generation with formic acid for ultrasensitive atomic fluorescence spectrometric determination of mercury: potential application to mercury speciation in water. J. Anal. At. Spectrom. 2005, 20, 746–750.
  • Pelaez, M.; Nolan, N.T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; G.Kontos, A.; Dunlop, P. S. M.; Hamilton, J. W. J.; Byrne, J. A.; O'shea, K.; Entezari, M. H.; Dionysiou, D. D. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal., B: Environ. 2012, 125, 331–349.
  • Wang, J. Nanomaterial-based electrochemical biosensors. Analyst 2005, 130(4), 421–426.
  • Auffan, M.; Rose, J.; Wiesner, M. R.; Bottero, J.Y. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 2009, 157(4), 1127–1133.
  • Bendicho, C.; Pena, F.; Costas, M.; Gil, S.; Lavilla, I. Photochemistry-based sample treatments as greener approaches for trace-element analysis and speciation. Trends Anal. Chem. 2010, 29(7), 681–691.
  • Mester, Z.; Sturgeon, R. J. Trace element speciation using solid phase microextraction. Spectrochim. Acta, B 2005, 60, 1243–1380.
  • Michalski, R.; Jabłonska-Czapla, M; ;Łyko, A.; Szopa, S. Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd., Chichester, United Kingdom, 2007.
  • Yin, Y.; Liu, J; He, B.; Shi, J.; Jiang, G. Simple interface of high-performance liquid chromatography–atomic fluorescence spectrometry hyphenated system for speciation of mercury based on photo-induced chemical vapour generation with formic acid in mobile phase as reaction reagent. J. Chrom. A 2008, 1181, 77–82.
  • Li, H.; Xu, Z.; Yang, L.; Wang, Q. Determination and speciation of Hg using HPLC-AFS by atomization of this metal on a UV/nano-ZrO2/HCOOH photocatalytic reduction unit. J. Anal. At. Spectrom. 2015, 30, 916–921.
  • Yang, H.; Dai, S.; Wang, M.; Mao, X.; Huang, Y.; Wang, F. Speciation of arsenic in rice by high-performance liquid chromatography–hydride generation-atomic fluorescence spectrometry with microwave-assisted extraction. Anal. Lett. 2014, 47(15), 2601–2612.
  • Mirandes, T. L.; Calderón, J.; Centrich, F.; Rubio, R.; Sánchez, J. F. L. A need for determination of arsenic species at low levels in cereal-based food and infant cereals. Validation of a method by IC–ICPMS. Food Chem. 2014, 147, 377–385.
  • Gorny, J.; Dumoulin, D.; Lesven, L.; Noiriel, C.; Madê, B.; Bilon, G. Development and application of a HPIC-ICP-MS method for the redox arsenic speciation in river sediment pore waters. J. Anal. At. Spectrom. 2015, 30, 1562–1570.
  • Issa, N. B.; Ognjanovi, V. N. R.; Marinkovic, A. D.; Rajakovic, L. Separation and determination of arsenic species in water by selective exchange and hybrid resins. Anal. Chim. Acta 2011, 706(1), 191–198.
  • Tonietto, G. B.; Godoy, J. M.; Oliveira, A. C.; Souza, M. V. Simultaneous speciation of arsenic (As(III), MMA, DMA, and As(V)) and selenium (Se(IV), Se(VI), and SeCN-) in petroleum refinery aqueous streams. Anal. Bioanal. Chem. 2010, 397(5), 1755–1761.
  • Rasmussen, R. R.; Hedegaard, R. V.; Larsen, E. H.; Sloth, J. Development and validation of an SPE HG-AAS method for determination of inorganic arsenic in samples of marine origin. J. Anal. Bioanal. Chem. 2012, 403(10), 2825–2834.
  • Jackson, B. P. Fast ion chromatography-ICP-QQQ for arsenic speciation. J. Anal. At. Spectrom. 2015, 30, 1405–1407.
  • Tziaras, T.; Pergantis, S. A.; Stephanou, E. G. Investigating the occurrence and environmental significance of methylated arsenic species in atmospheric particles by overcoming analytical method limitations. Environ. Sci. Technol. 2015, 49(19), 11640–11648.
  • Wang, P.; Zhao, G.; Tian, J.; Su, X. High-performance liquid chromatography-inductively coupled plasma mass spectrometry based method for the determination of organic arsenic feed additives and speciation of anionic arsenics in animal feed. J. Agric. Food Chem. 2010, 58(9), 5263–5270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.