Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 12
173
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Distribution of ion contents and microorganisms during the electro-bioremediation of petroleum-contaminated saline soil

, , &
Pages 1141-1149 | Received 21 Mar 2017, Accepted 01 Jun 2017, Published online: 24 Jul 2017

References

  • Schmidt, C.A.B.; Barbosa, M.C.; Almeida, M.D.S.S.D. A laboratory feasibility study on electrokinetic injection of nutrients on an organic, tropical, clayey soil. J. Hazard. Mater. 2007, 143, 655–661.
  • Wick, L.Y.; Shi, L.; Harms, H. Electro–bioremediation of hydrophobic organic soil-contaminants: a review of fundamental interactions. Electrochim. Acta 2007, 52, 3441–3448.
  • Shi, L.; Müller, S.; Harms, H.; Wick, L.Y. Effect of electrokinetic transport on the vulnerability of PAH-degrading bacteria in a model aquifer. Environ. Geochem. Health 2008, 2, 177–182.
  • Luo, Q.S.; Wang, H.; Zhang, X.H.; Fan, X.Y.; Qian, Y. In situ bioelectrokinetic remediation of phenol-contaminated soil by use of an electrode matrix and a rotational operation mode. Chemosphere 2006, 64, 415–422.
  • Li, F.M.; Guo, S.H.; Hartog, N. Electrokinetics-enhanced biodegradation of heavy polycyclic aromatic hydrocarbons in soil around iron and steel industries. Electrochim. Acta 2012, 85, 228–234.
  • Guo, S.H.; Fan, R.J.; Li, T.T.; Hartog, N.; Li, F.M.; Yang, X.L. Synergistic effects of bioremediation and electrokinetics in the remediation of petroleum contaminated soil. Chemosphere 2014, 109, 226–233.
  • Xu, W.; Wang, C.P.; Liu, H.B.; Zhang, Z.Y.; Sun, H.W. A laboratory feasibility study on a new electrokinetic nutrient injection pattern and bioremediation of phenanthrene in a clayey soil. J. Hazard. Mater. 2010, 15, 798–804.
  • Acar, Y.B.; Gale, R.J.; Alshawabkeh, A.N.; Marks, R.E.; Puppala, S.; Bricka, M.; Parker, R. Electrokinetic remediation: basics and technology status. J. Hazard. Mater. 1995, 40, 117–137.
  • Lear, G.; Harbottle, M.J.; Sills, G.; Know, C.J.; Semple, K.T.; Thompson, I.P. Impact of electrokinetic remediation on microbial communities within PCP contaminated soil. Environ. Pollut. 2007, 1, 139–146.
  • Ramírez, M.E.; Camacho, J.V.; Rodrigo, M.A.; Cañizares, P. Electrokinetic remediation of soil polluted with insoluble organics using biological permeable reactive barriers: Effect of periodic polarity reversal and voltage gradient. Chem. Eng. J. 2016, 299, 30–36.
  • Kim, S.S.; Han, S.J. Application of an enhanced electrokinetic ion injection system to bioremediation. Water Air Soil Pollut. 2003, 146, 365–377.
  • Gómez, J.; Alcántara, M.T.; Pazos, M.; Sanromán, M.A. A two-stage process using electrokinetic remediation and electrochemical degradation for treating benzo[a]pyrene spiked kaolin. Chemosphere 2009, 74, 1516–1521.
  • Pazos, M.; Plaza, A.; Martín, M.; Lobo, M.C. The impact of electrokinetic treatment on a loamy-sand soil properties. Chem. Eng. J. 2012, 183, 231–237.
  • Kim, D.H.; Jo, S.U.; Choi, J.H.; Yang, J.S.; Baek, K. Hexagonal two dimensional electrokinetic systems for restoration of saline agricultural lands: A pilot study. Chem. Eng. J. 2012, 198–199, 110–121.
  • Wada, S.I.; Umegaki, Y. Major ion and electrical potential distribution in soil under electrokinetic remediation. Environ. Sci. Technol. 2001, 35, 2151–2155.
  • Li, F.M.; Guo, S.H.; Hartog, N.; Yuan, Y.; Yang, X.L. Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions. Biodegradation 2016, 27, 1–13.
  • Muyzer, G.; de Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700.
  • Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688.
  • Megharaj, M.; Singleton, I.; McClure, N.; Naidu, R. Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Arch. Environ. Contam. Toxicol. 2000, 38, 439–445.
  • Capelli, S.M.; Busalmen, J.P.; de Sanchez, S.R. Hydrocarbon bioremediation of a mineral-base contaminated waste from crude oil extraction by indigenous bacteria. Int. Biodeter. Biodegr. 2001, 47, 233–238.
  • Fan, R.J.; Guo, S.H.; Li, T.T.; Li, F.M.; Yang, X.L.; Wu, B. Contributions of electrokinetics and bioremediation in the treatment of different petroleum components. Clean-Soil Air Water 2015, 43, 251–259.
  • Acar, Y.B.; Alshawabkeh, A.N. Principles of electrokinetic remediation. Environ. Sci. Technol. 1993, 27, 2638–2647.
  • Mohan, S.V.; Chandrasekhar, K. Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio- electrochemical system with simultaneous power generation. Bioresour. Technol. 2011, 102, 9532–9541.
  • Chen, G. Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 2004, 38, 11–41.
  • Chandrasekhar, K.; Mohan, S.V. Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: Effect of substrate concentration. Bioresour. Technol. 2012, 110, 517–525.
  • Virkutyte, J.; Sillanpää, M.; Latostenmaa, P. Electrokinetic soil remediation- critical overview. Sci. Total Environ. 2002, 289, 97–121.
  • Lekakis, E.H.; Antonopoulos, V.Z. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport. J. Hydrol. 2015, 530, 431–446.
  • Li, G.; Guo, S.H.; Li, S.H.; Zhang, L.Y.; Wang, S.S. Comparison of approaching and fixed anodes for avoiding the ‘focusing’ effect during electrokinetic remediation of chromium contaminated soil. Chem. Eng. J. 2012, 203, 231–238.
  • Garcia, C.; Hernandez, T.; Costa, F. Microbial activity in soils under mediterranean environmental conditions. Soil Biol. Biochem. 1994, 9, 1185–1191.
  • She, P.; Song, B.; Xing, X.h.; Loosdrecht, M.V.; Liu, Z. Electrolytic stimulation of bacteria Enterobacter dissolvens by a direct current. Biochem. Eng. J. 2006, 28, 23–29.
  • Harbottle, M.J.; Lear, G.; Sills, G.C.; Thompson, I.P. Enhanced biodegradation of pentachlorophenol in unsaturated soil using reversed field electrokinetics. J. Environ. Manage. 2009, 90, 1893–1900.
  • Kim, S.H.; Han, H.Y.; Lee, Y.J.; Kim, C.W.; Yang, J.W. Effect of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. Sci. Total Environ. 2010, 408, 3162–3168.
  • Lohner, S.T.; Becker, D.; Mangold, K.M.; Tiehm, A. Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectroprocess. Environ. Sci. Technol. 2011, 45, 6491–6497.
  • Kumar, A.G.; Vijayakumar, L.; Joshi, G.; Peter, D.M.; Dharani, G.; Kirubagaran, R. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment. Bioresource Technol. 2014, 170, 556–564.
  • Tan, L.; Qu, Y.Y.; Zhou, J.T.; Li, A.; Gou, M. Identification and characteristics of a novel salt-tolerant Exiguobacterium sp. for azo dyes decolorization. Appl. Biochem. Biotechnol. 2009, 159, 728–738.
  • Xia, J.; Li, L.Y. Numerical simulation of ionic transport in cement paste under the action of externally applied electric field. Constr. Build. Mater. 2013, 39, 51–59.
  • Shi, L.; Müller, S.; Loffhagen, N.; Harms, H.; Wick, L.Y. Activity and viability of polycyclic aromatic hydrocarbon–degrading Sphingomonas sp LB126 in a DC-electrical field typical for electrobioremediation measures. Microb. Biotechnol. 2008, 1, 53–61.
  • Wick, L.Y.; Buchholz, F.; Fetzer, I.; Kleinsteuber, S.; Härtig, C.; Shi, L.; Miltner, A.; Harms, H.; Pucci, G.N. Responses of soil microbial communities to weak electric fields. Sci. Total Environ. 2010, 408, 4886–4893.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.