Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 12
188
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Sulfide as an alternative electron donor to glucose for power generation in mediator-less microbial fuel cell

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1150-1157 | Received 04 May 2017, Accepted 01 Jun 2017, Published online: 31 Jul 2017

References

  • Amann, C.A. Alternative fuels and power systems in the long term. Int. J. Veh. Des. 1996, 17(5), 25–35.
  • Lovley, D.R. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol. 2006, 17, 327–332.
  • Strik, D.P.; Terlouw, H.; Hamelers, H.V.M.; Buisman, C.J.N. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC). Appl. Microbiol. Biotechnol. 2008, 81, 659–668.
  • Bullen, R.A.; Arnot, T.; Lakeman, J.; Walsh, F. Biofuel cells and their development. Biosens. Bioelectron. 2006, 21, 2015–2045.
  • Veziroglu, A.; Macario, R. Fuel cell vehicles: State of the art with economic and environmental concerns. Int. J. Hydrogen Energy. 2010, 36, 25–43.
  • Davis, F.; Higson, S.P.J. Biofuel cells–recent advances and applications. Biosens. Bioelectron. 2007, 22, 1224–1235.
  • Du, Z.; Li, H.; Gu, T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007, 25, 464–482.
  • Logan, B.E.; Hamelers, B.; Rozendal, R.; Schoder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192.
  • Rahimnejad, M.; Jafary, T.; Haghparast, F.; Najafpour, G.D.; Ghoreyshi, A.A. Nafion as a nanoproton conductor in microbial fuel cells. Turkish J. Eng. Environ. Sci. 2011, 34, 289–292.
  • Rahimnejad, M.; Bakeri, G.; Ghasemi, M.; Zirepour, A. A review on the role of proton exchange membrane on the performance of microbial fuel cell. Polym. Adv. Technol. 2014, 25, 1426–1432.
  • Rahimnejad, M.; Adhami, A.; Darvari, S.; Zirepour, A.; Oh, S.E. Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Eng. J. 2015, 54(3), 745–756.
  • Logan, B.E. Microbial Fuel Cells; John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. 2008. doi:10.1002/9780470258590.
  • Qian, F.; Morse, D.E. Miniaturizing microbial fuel cells. Trends Biotechnol. 2011, 29, 62–69.
  • Rabaey, K.; Verstraete, W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005, 23, 291–298.
  • Rahimnejad, M.; Bakeri, G.; Najafpour, G.; Ghasemi, M.; Oh, S.E. A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Res. J. 2014, 1, 7–15.
  • Jang, J.A.E.K.; Chang, I.N.S.; Kim, B.H. Improvement of cathode reaction of a mediatorless microbial fuel cell. J. Microbiol. Biotechnol. 2004, 14, 324–329.
  • Tartakovsky, B.; Guiot, S. A comparison of air and hydrogen peroxide oxygenated microbial fuel cell reactors. Biotechnol. Prog. 2006, 22, 241–246.
  • You, S.; Zhao, Q.; Zhang, J.; Jiang, J.; Zhao, S. A microbial fuel cell using permanganate as the cathodic electron acceptor. J. Power Sources 2006, 162, 1409–1415.
  • Schoder, U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys., 2007, 9, 2619–2629.
  • Chang, I.S.; Moon, H.; Bretschger, O.; Jang, J.K.; Park, H.I.; Nealson, K.H.; Kim, B.H. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 2006, 16, 163–177.
  • Jang, J.K.; Chang, I.S.; Kang, K.H.; Moon, H.; Cho, K.S.; Kim, B.H. Construction and operation of a novel mediator-and membrane-less microbial fuel cell. Process. Biochem. 2004, 39, 1007–1012.
  • Liu, Z.D.; Li, H.R. Effects of bio-and abio-factors on electricity production in a mediatorless microbial fuel cell. Biochem. Eng. J. 2007, 36, 209–214.
  • Jiang, X.; Hu, J.; Fitzgerald, L.A.; Biffinger, J.C.; Xie, P.; Ringeisen, B.R.; Lieber, C.M. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc. Natl. Acad. Sci. 2010, 107, 16806–16810.
  • Bond, D.R.; Lovley, D.R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 2003, 69, 1548.
  • Park, H.S.; Kim, B.H.; Kim, H.S.; Kim, H.J.; Kim, G.T.; Kim, M.; Chang, I.S.; Park, Y.K.; Chang, H.I. A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 2001, 7, 297–306.
  • SM, Z.; WRW, D.; NEA, B. Microbial fuel cells using mixed cultures of wastewater for electricity generation. Sains Malaysiana 2011, 40, 993–997.
  • Gorby, Y.A.; Yanina, S.; McLean, J.S.; Rosso, K.M.; Moyles, D.; Dohnalkova, A.; Beveridge, T.J.; Chang, I.S.; Kim, B.H.; Kim, K.S. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. 2006, 103, 11358–11363.
  • Reguera, G.; Nevin, K.P.; Nicoll, J.S.; Covalla, S.F.; Woodard, T.L.; Lovley, D.R. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 2006, 72, 7345–7348.
  • Pandey, P.; Shinde, V.N.; Deopurkar, R.L.; Kale, S.P.; Patil, S.A.; Pant, D. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy 2016, 168, 706–723.
  • Roy, S.; Schievano, A.; Pant, D. Electro-stimulated microbial factory for value added product synthesis. Bioresour. Technol. 2016, 213, 129–39.
  • Gil, G.C.; Chang, I.S.; Kim, B.H.; Kim, M.; Jang, J.K.; Park, H.S.; Kim, H.J. Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens. Bioelectron. 2003, 18, 327–334.
  • Wang, Y.H.; Xi, H.; Lin, F.J.; Wang, B.S.; Chen, Q.Y. The effect of substrates and anodes on microbial fuel cell performance. >Proccedings of the International Symposium on Water Resource and Environmental Protection (ISWREP); IEEE, 2011; 1841–1843.
  • Liu, Z.; Liu, J.; Zhang, S.; Su, Z. Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon-and protein-rich substrates. Biochem. Eng. J. 2009, 45, 185–191.
  • Pant, D.; Van Bogaert, G.; Diels, L.; Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101, 1533–1543.
  • Bajracharya, S.; Sharma, S.; Mohanakrishna, G.; Dominguez Benneton, X.; Strik, D PBTB; Sarma, P.M.; Pant, D. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew. Energy 2016, 98, 153–170.
  • Henshaw, P.F.; Zhu, W. Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor. Water Res. 2001, 35, 3605–3610.
  • Lens, P. Environmental technologies to treat sulphur pollution: principles and engineering; Int. Water Assoc. 2000, 35, 3605–3610.
  • Rabaey, K.; Van de Sompel, K.; Maignien, L.; Boon, N.; Aelterman, P.; Clauwaert, P.; De Schamphelaire, L.; Hai The Pham; Vermeulen, J.; Verhaege, M. Microbial fuel cells for sulfide removal. Environ. Sci. Technol. 2006, 40, 5218–5224.
  • Logan, B.; Cheng, S.; Watson, V.; Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 2007, 41, 3341–3346.
  • Rahimnejad, M.; Ghoreyshi, A.A.; Najafpour, G.; Jafary, T. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Appl. Energy. 2011, 88, 3999–4004.
  • Thomas, L.C.; Chamberlin, G.J. Colorimetric Chemical Analytical Methods; The Tintometer Ltd.: Salisbury, UK, 1980; 85–87.
  • Ghasemi, M.; Daud, W.R.W.; Rahimnejad, M.; Rezayi, M.; Fatemi, A.; Jafari, Y.; Somalu, M.; Manzour, A. Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells. Int. J. Hydrogen Energy 2013, 38, 9533–9540.
  • Jafary, T.; Rahimnejad, M.; Ghoreyshi, A.A.; Najafpour, G.; Hghparast, F.; Daud, W.R.W. Assessment of bioelectricity production in microbial fuel cells through series and parallel connections. Energy Convers. Manage. 2013, 75, 256–262.
  • Rahimnejad, M.; Ghoreyshi, A.; Najafpour, G.; Younesi, H.; Shakeri, M. A novel microbial fuel cell stack for continuous production of clean energy. Int. J. Hydrogen Energy. 2012, 37, 5992–6000.
  • Lee, H.S.; Parameswaran, P.; Kato-Marcus, A.; Torres, C.I.; Rittmann, B.E. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res. 2008, 42, 1501–1510.
  • Catal, T.; Li, K.; Bermek, H.; Liu, H. Electricity production from twelve monosaccharides using microbial fuel cells. J. Power Sources 2008, 175, 196–200.
  • Jafary, T.; Ghoreyshi, A.A.; Najafpour, G.D.; Fatemi, S.; Rahimnejad, M. Investigation on performance of microbial fuel cells based on carbon sources and kinetic models. Int. J. Hydrogen Energy 2013, 37, 1539–1549.
  • Najafpour, G.; Rahimnejad, M.; Ghoreshi, A. The enhancement of a microbial fuel cell for electrical output using mediators and oxidizing agents. Energy Sources A 2011, 33, 2239–2248.
  • Oh, S.; Min, B.; Logan, B. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 2004, 38, 4900–4904.
  • Sun, M.; Mu, Z.X.; Chen, Y.P.; Sheng, G.P.; Liu, X.W.; Chen, Y.Z.; Zhao, Y.; Wang, H.L.; Yu, H.Q.; Wei, L. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Environ. Sci. Technol. 2009, 43, 3372–3377.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.