Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 13
212
Views
10
CrossRef citations to date
0
Altmetric
Articles

Silver nanoparticles toxicity against airborne strains of Staphylococcus spp.

&
Pages 1247-1256 | Received 22 Mar 2017, Accepted 06 Jul 2017, Published online: 14 Sep 2017

References

  • Varadan, V.K.; Pillai, A.S.; Mukherji, D.; Dwivedi, M.; Chen, L. Nanoscience and Nanotechnology in Engineering in Nanoscale Fabrication and Characterization, World Scientific: Singapore, 2010, 71–105.
  • Maruyama, M.; Matsubayashi, R.; Iwakuro, H.; Komatsu, T. Silver nanosintering: a lead—free alternative to soldering. Appl. Phys. A Mater. Sci. Process. 2008, 93, 467–470. doi: 10.1007/s00339-008-4807-5
  • Song, J.Y.; Kim, B.S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 2009, 32, 79–84. doi: 10.1007/s00449-008-0224-6
  • Russell, A. D.; Hugo, W. B. Antimicrobial activity and action of silver. Progr. Med. Chem. 1994, 31, 351–370. doi:10.1016/S0079-6468(08)70024-9
  • Cho, K.H.; Park, J.E.; Osaka, T.; Park, S.G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta. 2005, 51, 956–960. doi:10.1016/j.electacta.2005.04.071
  • Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.; Chiu, J.F.; Chen, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 2006, 5, 916–924. doi:10.1021/pr0504079
  • Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, L. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008, 42(23), 8959–8964. doi:10.1021/es801785m
  • Sotiriou, G.A.; Pratsinis, S.E. Antibacterial activity of nanosilver ions and particles. Environ. Sci. Technol. 2010, 44(14), 5649–5654. doi:10.1021/es101072s
  • Kędziora, A.; Gorzelańczyk, K.; Bugla-Płoskońska, G. Positive and negative aspects of silver nanoparticles usage. Biol. Int. 2013, 53, 67–76.
  • Egger, S.; Lehmann, R.P.; Height, M.J.; Loessner, M.J.; Schuppler, M. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol. 2009, 75, 2973–2976. doi:10.1128/AEM.01658-08
  • Yoon, K.Y.; Byeon, J.H.; Park, J.H.; Ji, J.H.; Bae, G.N.; Hwang, J. Antimicrobial characteristics of silver aerosol nanoparticles against Bacillus subtilis bioaerosols. Environ. Eng. Sci. 2008, 25(2), 289–293. doi:10.1089/ees.2007.0003
  • Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007, 18(22), 1–9. doi:10.1088/0957-4484/18/22/225103
  • Panacek, A.; Kvitek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizurova, N.; Sharma, V.; Nevecna, T.; Zboril, R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B. 2006, 110(33), 16248–16253. doi: 10.1021/jp063826h
  • Kawahara, K.; Tsuruda, K.; Morishita, M.; Uchida, M. Antibacterial antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent. Mater. 2000, 16(6), 452–455. doi:10.1016/S0109-5641(00)00050-6
  • Rhim, J.W.; Hong, S.I.; Park, H.M.; Ng, P. K. W. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J. Agric. Food Chem. 2006, 54(16), 5814–5822. doi:10.1021/jf060658h
  • Kim, J.S.K.; Kuk, E.; Yu, K. N.; Kim, J.-H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C.-Y.; Kim, Y.-K.; Lee, Y.-S.; Jeong, D. H.; Cho, M.-H. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. doi:10.1016/j.nano.2006.12.001
  • Kong, H.; Jang, J. Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir. 2008, 24(5), 2051–2056. doi:10.1021/la703085e
  • Petica, A.; Gavriliu, S.; Lungu, M.; Buruntea, N.; Panzaru, C. Colloidal silver solutions with antimicrobial properties. Mater. Sci. Eng. 2008, 152, 22–27. doi:10.1016/j.mseb.2008.06.021
  • Lara, H.H.; Ayala-Núñez, N.V.; Ixtepan Turrent, L.D.C.; Padilla, C.R. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 2010, 26, 615–621. doi:10.1007/s11274-009-0211-3
  • Matsumura, Y.; Yoshikata, K.; Kunisaki, S.; Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 2003, 69, 4278–4281. doi:10.1128/AEM.69.7.4278-4281
  • Lloyd, D.H.; Littlewood, J.D.; Craig, J.M.; Thomsett, L.R. Practical Equine Dermatology, Blackwell Science: Carlton, 2007.
  • Szadkowska-Stańczyk, I.; Bródka, K.; Buczyńska, A. Exposure to bioaerosols among CAFO workers (Swine feeding). Med. Pr. 2010, 61(3), 257–269. ( in Polish)
  • Di Giulio, M.; Grande, R.; Di Campli, E.; Di Bartolomeo, S.; Cellini, L. Indoor air quality in university environments. Environ. Monit. Assess. 2010, 170, 509–517. doi:10.1007/s10661-009-1252-7
  • Mallardo, K.; Nizza, S.; Fiorito, F.; Pagnini, U.; De Martino, L. A comparative evaluation of methicillin-resistant staphylococci isolated from harness racing-horses, breeding mares and riding-horses in Italy. Asian Pac. J. Trop. Biomed. 2013, 3(3), 169–173. doi:10.1016/S2221-1691(13)60044-1
  • Sellon, D.C.; Long, M. Equine Infectious Diseases; Elsevier Health Sciences, Saunders Elsevier: St. Louis, MO, 2013, 258–280.
  • PN-Z-04008-08. Air purity protection. Sampling. Air sampling for microbiological examination by the aspiration and sedimentation methods. 1989. ( in Polish)
  • Kloos, W.E.; Schleifer, K.H. Isolation and characterization of Staphylococci from human skin II. Descriptions of four new species: Staphylococcus warneri, Staphylococcus capitis, Staphylococcus hominis, and Staphylococcus simulans. Int. J. Syst. Bacteriol. 1975, 25, 62–79. doi:10.1099/00207713-25-1-62
  • Kloos, W.E.; Bannerman, T.L. Update on clinical significance of coagulase-negative staphylococci. Clin. Microbiol. Rev. 1994, 7(1), 117–140.
  • Gaillot, O.; Wetsch, M.; Fortineau, N.; Berche, P. Evaluation of CHROMagar Staph. aureus, a new chromogenic medium, for isolation and presumptive identification of Staphylococcus aureus from human clinical specimens. J. Clin. Microbiol. 2000, 38(4), 1587–1591. doi:10.1007/s10096-006-0144-9
  • Murray, P.E. Manual of Clinical Microbiology, 9th ed.; ASM Press: Washington, DC, 2007.
  • Bohme, K.; Fernandez-No, I.C.; Barros-Velazquez, J.; Gallardo, J.M.; Calo-Mata, P.; Cañas, B. Species differentiation of seafood spoilage and pathogenic Gram-negative bacteria by MALDI-TOF mass fingerprinting. J. Proteome Res. 2010, 9, 3169–3183. doi:10.1021/pr100047q
  • Seng, P.; Rolain, J.M.; Fournier, P.E.; La Scola, B.; Drancourt, M.; Raoult, D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 2010, 5(11), 1733–1754. doi:10.2217/fmb.10.127
  • Croxatto, A.; Prod'hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012, 36(2), 380–407. doi:10.1111/j.1574-6976.2011.00298.x
  • Kosikowska, U.; Stępień-Pyśniak, D.; Pietras-Ożga, D.; Andrzejczuk, J.; Juda, M.; Malm, A. Application of MALDI-TOF MS for identification of clinical isolates of bacteria from humans and animals. Diagn. Lab. 2015, 51(1), 23–30. ( in Polish)
  • Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. M. S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed.-Nanotechnol. 2007, 3, 168–171. doi:10.1016/j.nano.2007.02.001
  • Sheehy, K.; Casey, A.; Murphy, A.; Chambers, G. Antimicrobial properties of nano-silver: A cautionary approach to ionic interference. J. Colloid Interface Sci. 2015, 443, 56–64. doi:10.1016/j.jcis.2014.11.074
  • European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoints—bacteria (v. 6.0). 2016. Available at http://ecdc.europa.eu/en/activities/diseaseprogrammes/ARHAI/Pages/public_consultation_clinical_microbiology_infection_article.aspx
  • Slistan-Grijalva, A.; Herrera-Urbina, R.; Rivas-Silva, J.F.; Avalos-Borja, M.; Castillon-Barraza, F.F.; Posada-Amarillas, A. Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Physica E. 2005, 27, 104–112. doi: 10.1016/j.physe.2004.10.014
  • Sobczak-Kupiec, A.; Malina, D.; Wzorek, Z.; Zimowska, M. Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro Nano Lett. 2011, 6(8), 656–660. doi: 10.1049/mnl.2011.0152
  • Ratner, M.; Ratner, D. Nanotechnology: A Gentle Introduction to the Next Big Idea; Pearson Education Inc.: New Jersey, 2003; 44.
  • Sönnichsen, C.; Franzl, T.; Wilk, T.; Plessen, G.; Feldmann, J. Plasmon resonances in large noble-metal clusters. New J. Phys. 2002, 4, 93.1–93.8.
  • Stull, J.W.; Slavić, D.; Rousseau, J.; Weese, J.S. Staphylococcus delphini and methicillin-resistant S. pseudintermedius in horses. Emerg. Infect. Dis. 2014, 20(3), 485–487. doi:10.3201/eid2003.130139
  • Karakulska, J.; Fijałkowski, K.; Nawrotek, P.; Pobucewicz, A.; Poszumski, F.; Czernomysy-Furowicz, D. Identification and methicillin resistance of Coagulase-Negative Staphylococci isolated from nasal cavity of healthy horses. J. Microbiol. 2012, 50(3), 444–451. doi:10.1007/s12275-012-1550-6
  • Weese, J.S.; Rousseau, J. Attempted eradication of methicillin-resistant Staphylococcus aureus colonisation in horses on two farms. Equine Vet. J. 2005, 37(6), 510–514. doi:10.2746/042516405775314835
  • Cuny, C.; Kuemmerle, J.; Stanek, C.; Willey, B.; Strommenger, B.; Witte, W. Emergence of MRSA infections in horses in a veterinary hospital: strain characterisation and comparison with MRSA from humans. Eurosurveillance 2006, 11(1), 44–47.
  • Weese, J.S.; Rousseau, J.; Willey, B.M.; Archambault, M.; McGeer, A.; Low, D.E. Methicillin-resistant Staphylococcus aureus in horses at a veterinary teaching hospital: frequency, characterization, and association with clinical disease. J. Vet. Intern. Med. 2006, 20(1), 182–186. doi:10.1111/j.1939-1676.2006.tb02839.x
  • Burton, S.; Reid-Smith, R.; McClure, J.T.; Weese, J.S. Staphylococcus aureus colonization in healthy horses in Atlantic Canada. Can. Vet. J. 2008, 49, 797–799.
  • Kheybari, S.; Samadi, N.; Hosseini, S.V.; Fazeli, A.; Fazeli, M.R. Synthesis and antimicrobial effects of silver nanoparticles produced by chemical reduction method. Daru 2010, 18(3), 168–172.
  • Hernandez-Sierra, J.F.; Ruiz, F.; Pena, D.C.; Martinez-Gutierrez, F.; Martinez, A.E.; Guillen Ade, J.; Tapia-Pérez, H.; Castañón, G.M. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 2008, 4(3), 237–240. doi:10.1016/j.nano.2008.04.005
  • Loh, J.V.; Percival, S.L.; Woods, E.J.; Williams, N.J.; Cochrane, C.A. Silver resistance in MRSA isolated from wound and nasal sources in humans and animals. Int. Wound J. 2009, 6(1), 32–38. doi:10.1111/j.1742-481X.2008.00563.x
  • Silver, S.; Phung, L.T.; Silver, G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J. Ind. Microbiol. Biotechnol. 2006, 33(7), 627–634. doi:10.1007/s10295-006-0139-7
  • Santos, C.A.; Seckler, M.M.; Ingle, A.P.; Gupta, I.; Galdiero, S.; Galdiero, M.; Gade, A.; Rai, M. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. J. Pharm. Sci. 2014, 103(7), 1931–1944. doi:10.1002/jps.24001
  • Shrivastava, S.; Bera, T.; Singh, S.K.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of antiplatelet properties of silver nanoparticles. ACS Nano. 2009, 3(6), 1357–1364. doi:10.1021/nn900277t
  • Stefan, M.; Hritcu, L.; Mihasan, M.; Pricop, D.; Gostin, I.; Olariu, R.I.; Dunca, S.; Melnig, V. Enhanced antibacterial effect of silver nanoparticles obtained by electrochemical synthesis in poly(amide-hydroxyurethane) media. J. Mater. Sci. Mater. Med. 2011, 22, 789–796. doi:10.1007/s10856-011-4281-z
  • Krychowiak, M.; Grinholc, M.; Banasiuk, R.; Krauze-Baranowska, M.; Glod, D.; Kawiak, A.; Krolicka, A. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLOS One. 2014, 9(12), e115727. doi:10.1371/journal.pone.0115727
  • Paredes, D.; Ortiz, C.; Torres, R. Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Nanomed. 2014, 9, 1717–1729. doi:10.2147/IJN.S57156
  • Petrus, E.M.; Tinakumari, S.; Chai, L.C.; Ubong, A.; Tunung, R.; Elexson, N.; Chai, L.F.; Son, R. A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens. Int. Food Res. J. 2011, 18, 55–66.
  • Martinez-Castañón, G.A.; Nino-Martinez, N.; Martinez-Gutierrez, F.; Martinez-Mendoza, J.R.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008, 10(8), 1343–1348. doi:10.1007/s11051-008-9428-6
  • Fernandez, E.J.; Garcia-Barrasa, J.; Laguna, A.; Lopez-de Luzuriaga, J.M.; Monge, M.; Torres, C. The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach. Nanotechnology. 2008, 19, 1–6. doi:10.1088/0957-4484/19/18/185602
  • Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramirez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005, 16(10), 2346–2353. doi:10.1088/0957-4484/16/10/059
  • Yang, L.; Shen, Y.; Xie, A.; Liang, J.; Li, S.; Zhang, Q. Size- and shape-controlled synthesis and assembly of silver nanocomplex in UV-irradiated TSA solution. Eur. J. Inorg. Chem. 2006, 22, 4658–4664. doi:10.1002/ejic.200600621
  • Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. Engl. 2009, 48(1), 60–103. doi:10.1002/anie.200802248
  • Sun, Y.; An, C. Shaped gold and silver nanoparticles. Front. Mater. Sci. 2010, 5(1), 1–24. DOI 10.1007/s11706-011-0100-1
  • Chaloupka, K.; Malam, Y.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010, 28(11), 580–588. doi:10.1016/j.tibtech.2010.07.006
  • Malina, D.; Sobczak-Kupiec, A.; Kowalski, Z. Silver nanoparticles—review of chemical synthesis methods. Tech. Trans. 2010, 107, 183–192. ( in Polish)
  • Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticle. Nanomedicine: NBM. 2010, 6, 257–262. doi:10.1016/j.nano.2009.07.002
  • Shankar, S.S.; Rai, A.; Ahmad, A.; Sastry, M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 2004, 275, 496–502. doi: 10.1016/j.jcis.2004.03.003
  • Daizy, P. Green synthesis of gold and silver nanoparticles using Hibiscus rosasinensis. Physica E. 2010, 42, 1417–1424. doi: 10.1016/j.physe.2009.11.081
  • Bar, H.; Bhui, D.K.; Sahoo, G.P.; Sarkar, P.; De, S.P.; Misra, A. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp. 2009, 339, 134–139. doi:10.1016/j.colsurfa.2009.02.008
  • El-Aziz, A.R.M.; Al-Othman, M.R.; Al-Sohaibani, S.A.; Mahmoud, M.A.; Sayed, S.R.M. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus niger isolated from Saudi Arabia (Strain KSU-12). Dig. J. Nanomater. Biostruct. 2012, 7(4), 1491–1499.
  • Roy, S.; Mukherjee, M; Chakraborty, S.; Das, T.K. Biosynthesis, characterisation and antifungal activity of silver nanoparticles synthesized by the fungus Aspergillus foetidus MTCC8876. Dig. J. Nanomater. Biostruct. 2013, 8(1), 197–205.
  • Basavegowda, N.; Sobczak-Kupiec, A.; Malina, D.; Yathirajan, H.S.; Keerthi, V.R.; Chandrashekar, N.; Salman, D., P L. Plant mediated synthesis of gold nanoparticles using fruit extracts of Ananas comosus (L.) (Pineapple) and evaluation of biological activities. Adv. Mater. Lett. 2013, 4, 332–337. doi: 10.5185/amlett.2012.9423
  • Yoshimura, H. Protein-assisted nanoparticle synthesis. Colloids Surf. A Physicochem. Eng. Asp. 2006, 282–283, 464–470. doi: 10.1016/j.colsurfa.2006.01.037
  • Deng, Q.Y.; Yang, B.; Wang, J.F.; Whiteley, C.G.; Wang, X.N. Biological synthesis of platinum nanoparticles with apoferritin. Biotechnol. Lett. 2009, 31, 1505–1509. doi: 10.1007/s10529-009-0040-3
  • Daizy, P. Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta A. 2010, 75, 1078–1081. doi: 10.1016/j.saa.2009.12.058
  • Kora, A.J.; Sashidhar, R.B.; Arunachalam, J. Gum kondagogu (Cochlospermum gossypium): A template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr. Polym. 2010, 82, 670–679. doi:10.1016/j.carbpol.2010.05.034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.