Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 13
185
Views
7
CrossRef citations to date
0
Altmetric
Articles

Modacrylic anion-exchange fibers for Cr(VI) removal from chromium-plating rinse water in batch and flow-through column experiments

, , , &
Pages 1195-1203 | Received 02 May 2017, Accepted 15 Jun 2017, Published online: 18 Sep 2017

References

  • Zhitkovich, A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011, 24, 1617–1629.
  • Richard, F.C.; Bourg, A.C.M. Aqueous geochemistry of chromium: A review. Water Res. 1991, 25, 807–816.
  • Bhaumik, M.; Maity, A.; Srinivasu, V.V.; Onyango, M.S. Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers. Chem. Eng. J. 2012, 181/182, 323–333.
  • Huang, J.; Zhang, X.; Bai, L.; Yuan, S. Polyphenylene sulfide based anion exchange fiber: Synthesis, characterization and adsorption of Cr(VI). J. Environ. Sci. 2012, 24, 1433–1438.
  • Dai, L.; Cui, L.; Zhou, D.; Huang, J.; Yuan, S. Resource recovery of Cr(VI) from electroplating wastewater: Laboratory and pilot-scale investigation using fibrous weak anion exchanger. J. Taiwan Inst. Chem. Eng. 2015, 54, 170–177.
  • Henryk, K.; Jaroslaw, C.; Witold, Ż. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters. Environ. Sci. Pollut. Res. 2016, 23, 527–534.
  • Sengupta, A.K.; Clifford, D.; Subramonian, S. Chromate ion-exchange process at alkaline pH. Water Res. 1986, 20, 1177–1184.
  • Galán, B.; Castañeda, D.; Ortiz, I. Removal and recovery of Cr(VI) from polluted ground waters: A comparative study of ion-exchange technologies. Water Res. 2005, 39, 4317–4324.
  • Mustafa, S.; Bashir, H.; Rehana, N.; Naeem, A. Selectivity reversal and dimerization of chromate in the exchanger Amberlite IRA-400. React. Func. Polym. 1997, 34, 135–144.
  • Neagu, V.; Untea, I.; Tudorache, E.; Luca, C. Retention of chromate ion by conventional and N-ethylpyridinium strongly basic anion exchange resins. React. Func. Polym. 2003, 57, 119–124.
  • Lin, S.H.; Kiang, C.D. Chromic acid recovery from waste acid solution by an ion exchange process: equilibrium and column ion exchange modeling. Chem. Eng. J. 2003, 92, 193–199.
  • Marshall, W.E.; Wartelle, L.H. Chromate (CrO42−) and copper (Cu2+) adsorption by dual-functional ion exchange resins made from agricultural by-products. Water Res. 2006, 40, 2541–2548.
  • Mukhopadhyay, B.; Sundquist, J.; White, E. Hydro-geochemical controls on removal of Cr(VI) from contaminated groundwater by anion exchange. Appl. Geochem. 2007, 22, 370–387.
  • Shi, T.; Wang, Z.; Liu, Y.; Jia, S.; Changming, D. Removal of hexavalent chromium from aqueous solutions by D301, D314 and D354 anion-exchange resins. J. Hazard. Mat. 2009, 161, 900–906.
  • El-Moselhy, M.M.; Hakami, O.M. Selective removal of chromate using hybrid anion exchanger. Desal. Water Treat. 2015, 56, 2917–2924.
  • Wang, W.; Li, M.; Zeng, Q. Thermodynamics of Cr(VI) adsorption on strong alkaline anion exchange fiber. Trans. Nonferrous Met. Soc. China. 2012, 22, 2831−2839.
  • Zheng, W.; Hu, J.; Han, Z.; Diesel, E.; Wang, Z.; Zheng, Z.; Ba, C.; Langer, J.; Economy, J. Interactions of Cr(VI) with hybrid anion exchange/porous carbon fibers in aqueous solution at natural pH. Chem. Eng. J. 2016, 287, 54−61.
  • Lee, C.G.; Park, J.A.; Choi, J.W.; Ko, S.O.; Lee, S.H. Removal and recovery of Cr(VI) from industrial plating wastewater using fibrous anion exchanger. Water Air Soil Pollut. 2016, 227, 287–297.
  • Nesteronok, P.V.; Soldatov, V.S. Acid–base properties of ion exchangers: V. Synthesis and properties of ion exchangers on the base of modacrylic polyacrylonitrile–vinylchloride fibers. React. Function. Polym. 2011, 71, 1033–1039.
  • Neagu, V.; Mikhalovsky, S. Removal of hexavalent chromium by new quaternized crosslinked poly(4-vinylpyridines). J. Hazard. Mater. 2010, 183, 533–540.
  • Gupta, S.S.; Bhattacharyya, K.G. Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Colloid Interf. 2011, 162, 39–58.
  • Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10.
  • Aita, A.A. Synthesis of a quaternary amine anion exchange resin and study its adsorption behaviour for chromate oxyanions. J. Hazard. Mat. 2006, B137, 1049–1055.
  • Yoon, S.Y.; Lee, C.G.; Park, J.H.; Kim, J.H.; Kim, S.B.; Lee, S.H.; Choi, J.W. Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem. Eng. J. 2014, 236, 341–347.
  • Gonzalez, M.G.; Cabanelas, J.C.; Baselga, J. Applications of FTIR on epoxy resins – identification, monitoring the curing process, phase separation and water uptake. In: Theophile, T. (Ed.), Infrared Spectroscopy – Materials Science, Engineering and Technology. InTech Croatia, Rijeka, 2012, 261–284.
  • Turhan, Y.; Dogan, M.; Alkan, M. Poly(vinyl chloride)/Kaolinite nanocomposites: Characterization and thermal and optical properties. Ind. Eng. Chem. Res. 2010, 49, 1503–1513.
  • Ashraf, S.M. A Laboratory Manual of Polymers. IK International Publishing House Pvt. Ltd India, New Delhi, 2008.
  • Li, G.; Xiao, J.; Zhang, W. Efficient and reusable amine-functionalized polyacrylonitrile fiber catalysts for Knoevenagel condensation in water. Green Chem. 2012, 14, 2234–2242.
  • Koyama, M.; Tsujizaki, Y.; Sakamuram, S. New amides from buckwheat seeds (Fagopyrum esculentum Moench). Agr. Biol. Chem. 1973, 37, 2749–2753.
  • Ko, Y.G.; Choi, U.S.; Kim, T.Y.; Ahn, D.J.; Chun, Y.J. FT-IR and isotherm study on anion adsorption onto novel chelating fibers. Macromol. Rapid Commun. 2002, 23, 535–539.
  • Shin, D.H.; Ko, Y.G.; Choi, U.S.; Kim, W.N. Design of high efficiency chelate fibers with an amine group to remove heavy metal ions and pH-related FT-IR analysis. Ind. Eng. Chem. Res. 2004, 43, 2060–2066.
  • Sun, Y.; Yue, Q.; Gao, B.; Gao, Y.; Li, Q.; Wang, Y. Adsorption of hexavalent chromium on Arundo donax Linn activated carbon amine-crosslinked copolymer. Chem. Eng. J. 2013, 217, 240–247.
  • Kim, M.K.; Sundaram, K.S.; Iyengar, G.A.; Lee, K.P. A novel chitosan functional gel included with multiwall carbon nanotube and substituted polyaniline as adsorbent for efficient removal of chromium ion. Chem. Eng. J. 2015, 267, 51–64.
  • Fellenz, N.; Perez-Alonso, F.J.; Martin, P.P.; García-Fierro, J.L.; Bebgoa, J.F.; Marchetti, S.G.; Rojas, S. Chromium (VI) removal from water by means of adsorption-reduction at the surface of amino-functionalized MCM-41 sorbents. Microporo. Mesoporo. Mat. 2017, 239, 138–146.
  • Kim, H.C.; Park, S.J.; Lee, C.G.; Han, Y.U.; Park, J.A.; Kim, S.B. Humic acid removal from water by iron-coated sand: A column experiment. Environ. Eng. Res. 2009, 14, 41–47.
  • Lee, C.G.; Kim, J.H.; Kang, J.K.; Kim, S.B.; Park, S.J.; Lee, S.H.; Choi, J.W. Comparative analysis of fixed-bed sorption models using phosphate breakthrough curves in slag filter media. Desalin. Water Treat. 2015, 55, 1795–1805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.