Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 13
246
Views
5
CrossRef citations to date
0
Altmetric
Articles

Environmental biodegradation of halophenols by activated sludge from two different sewage treatment plants

, , , , &
Pages 1240-1246 | Received 04 May 2017, Accepted 01 Jul 2017, Published online: 14 Sep 2017

References

  • Czaplicka, M. Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 2004, 322, 21–39.
  • Chaojie, Z.; Qi, Z.; Ling, C.; Zhichao, W.; Bin, X. Biodegradation of meta-fluorophenol by an acclimated activated sludge. J. Hazard. Mater. 2007, 141, 295–300.
  • Sahoo, N. K.; Pakshirajan, K.; Ghosh, P. K. Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6 in bath shake flasks and in a continuously operated packed bed reactor. Biodegradation 2014, 25, 265–276.
  • Olaniran, A. O.; Igbinosa, E. O. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere 2011, 83, 1297–1306.
  • Pera-Titus, M.; García-Molina, V.; Baños, M. A.; Giménez, J.; Esplugas, S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B-Environmental 2004, 47, 219–256.
  • Arora, P. K.; Bae, H. Bacterial degradation of chlorophenols and their derivatives. Microb. Cell Fact. 2014, 13, 31.
  • Nesvera, J.; Rucka, L.; Patek, M. Catabolism of phenol and its derivatives in bacteria: genes, their regulation, and use in the biodegradation of toxic pollutants. Adv. Appl. Microbiol. 2015, 93, 107–160.
  • Acikgoz, E.; Ozcan, B. Phenol biodegradation by halophilic archaea. Int. Biodeter. Biodegr. 2016, 107, 140–146.
  • Uysal, A.; Turkman, A. Biodegradation of 4-CP in an activated sludge reactor: effects of biosurfactant and the sludge age. J. Hazar. Mater. 2007, 148, 151–157.
  • Marques-Rocha, F. J.; Hernandez-Rodriguez, V.; Lamela, M. T. Biodegradation of diesel oil in soil by a microbial consortium. Water Air Soil Poll. 2001, 1128, 313–320.
  • Zhong, H.; Zheng, G.; Yuan, X. Z.; Fu, H.; Huang, G. H.; Ren, F. Y. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Appl. Microbiol. Biotechnol. 2007, 77, 447–455.
  • Sotirova, A.; Spasova, D.; Vasileva-Tonkova, E.; Galabova, D. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiol. Res. 2009, 164, 297–303.
  • Kaczorek, E.; Chrzanowski, L.; Pijanowska, A.; Olszanowski, A. Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipides and saponins. Bioresource Technol. 2008, 10, 4285–4291.
  • Smulek, W.; Zdarta, A.; Pacholak, A.; Zgoła-Grześkowiak, A.; Marczak, Ł.; Jarzębski, M.; Kaczorek, E. Saponaria officinalis L. extract: Surface active properties and impact on environmental bacterial strains. Colloid Surface B. 2017, 150, 209–215.
  • Sze, A.; Erickson, D.; Ren, L.; Li, D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. J. Colloid Interf. Sci. 2003, 261, 402–410.
  • Zhang, D.; Zhu, L.; Li, F. Influences and mechanisms of surfactants on pyrene biodegradation based on interactions of surfactant with a Klebsiella oxytoca strain. Bioresour. Technol. 2013, 142, 454–461.
  • Ronen, Z.; Visonvsky, S.; Nejidat, A. Soil extracts and coculture and soil by auxotrophic Achromobacter piechaudii strain TBPZ. Soil Biol. Biochem. 2005, 37, 1640–1647.
  • Häggblom, M. M.; Bossert, I. D. Halogenated organic compounds–a global perspective. In: Häggblom, M. M., Bossert, I. D. (Eds.), Dehalogenation: Microbial Processes and Environmental Applications. Kluwer Academic Publishers, Boston, Mass, 2003, pp. 3–29.
  • Farrell, A.; Quilty, B. Degradation of mono-chlorophenols by a mixed microbial community via a meta-cleavage pathway. Biodegradation 1999, 10, 353–362.
  • Crawford, R. L.; Jung, C. M.; Strap, J. L. The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 2007, 18, 525–539.
  • Demnerova, K.; Mackova, M.; Spevakova, V.; Beranova, K.; Kochankova, L.; Lovecka, P.; Ryslava, E.; Macek, T. Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations. Int. Microbiol. 2005, 8, 205–211.
  • Yamada, T.; Takahama, Y.; Yamada, Y. Biodegradation of 2,4,6- tribromophenol by Ochrobactrum sp. strain TB01. Biosci. Biotech. Bioch. 2008, 72, 1264–1271.
  • Ferreira, M. I. M.; Marchesi, J. R.; Janssen, D. B. Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl. Microbiol. Biotechnol. 2008, 78, 709–717.
  • Kim, E.-J.; Jeon, J.-R.; Kim, Y.-M.; Murugesan, K.; Chang, Y.-S. Mineralization and transformation of monofluorophenols by Pseudonocardia benzenivorans. Appl. Microbiol. Biotechnol. 2010, 87, 1569–1577.
  • Kaczorek, E.; Smułek, W.; Zdarta, A.; Sawczuk, A.; Zgoła-Grześkowiak, A. Influence of saponins on the biodegradation of halogenated phenols. Ecotox. Environ. Safe. 2016, 131, 127–134.
  • Bekins, B. A.; Warren, E.; Godsy, E. M. A comparison of zero-order, first-order, and Monod biotransformation models. Ground Water 1998, 36, 261–268.
  • Sahinkaya, E.; Dilek, F. B. Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2,4-DCP. J. Environ. Manage. 2007, 83, 427–436.
  • Korchowiec, B.; Gorczyca, M.; Wojszko, K.; Janikowska, M.; Henry, M.; Rogalska, E. Impact of two different saponins on the organization of model lipid membranes. BBA- Biomembranes 2015, 1848(10), 1963–1973.
  • Sen, S.; Makkar, H. P. S.; Muetzel, S.; Becker, K. Effect of Quillaja saponaria saponins and Yucca schidigera plant extract on growth of Escherichia coli. Lett. Appl. Microbiol. 1998, 27, 35–38.
  • Abbasnezhad, H.; Gray, M. R.; Foght, J. M. Two different mechanisms for adhesion of Gram-negative bacterium, Pseudomonas fluorescens LP6a, to an oil–water interface. Colloid. Surface. B 2008, 62, 36–41.
  • Mohanty, G.; Mukherji, S. Effect of an emulsifying surfactant on diesel degradation by cultures exhibiting inducible cell surface hydrophobicity. J. Chem. Technol. Biotechnol. 2007, 82, 1004–1011.
  • Kaczorek, E.; Olszanowski, A. Uptake of hydrocarbon by Pseudomonas fluorescens (P1) and Pseudomonas putida (K1) strains in the presence of surfactants: A cell surface modification. Water Air Soil Poll. 2011, 214, 451–459.
  • Mohanty, S.; Mukherji, S. Surfactant aided biodegradation of NAPLs by Burkholderia multivorans: Comparison between Triton X-100 and rhamnolipid JBR-515. Colloid. Surface. B 2013, 102, 644–652.
  • Zhong, H.; Zeng, G. M.; Liu, J. X.; Xu, X. M.; Yuan, X. Z.; Fu, H. Y.; Huang, G. H.; Liu, Z. F.; Ding, Y. Adsorption of monorhamnolipid and dirhamnolipid of two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity. Appl. Microbiol. Biotechnol. 2008, 79, 671–677.
  • Al-Tahhan, R. A.; Sandrin, T. R.; Bodour, A.; Maier, R. Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl. Environ. Microbiol. 2010, 66, 3262–3268.
  • Liu, S.; Guo, Ch.; Liang, X.; Wu, F.; Dang, Z. Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B. Ecotox. Environ. Saf. 2016, 129, 210–218.
  • Zeng, G.; Liu, Z.; Zhong, H.; Li, J.; Yuan, X.; Fu, H.; Ding, Y.; Wang, J.; Zhou, M. Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties. Appl. Microbiol. Biotechnol. 2011, 90, 1155–1161.
  • Tian, W.; Yao, J.; Liu, R.; Zhu, M.; Wang, F.; Wu, X.; Liu, H. Effect of natural and synthetic surfactants on crude oil biodegradation by indigenous strains. Ecotox. Environ. Saf. 2016, 129, 171–179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.