Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 14
144
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Metal removal efficiency, operational life and secondary environmental impacts of a stormwater filter developed from iron-oxide-amended bottom ash

&
Pages 1330-1340 | Received 27 Apr 2017, Accepted 20 Jul 2017, Published online: 29 Sep 2017

References

  • Kayhanian, M.; Fruchtman, B.D.; Gulliver, J.S.; Montanaro, C.; Ranieri, E.; Wuertz, S. Review of highway runoff characteristics: Comparative analysis and universal implications. Water Res. 2012, 46, 6609–6624.
  • Zhou, Y.-F.; Haynes, R. A comparison of organic wastes as bioadsorbents of heavy metal cations in aqueous solution and their capacity for desorption and regeneration. Environ. Earth Sci. 2012, 66, 1137–1148.
  • Gorme, J.B.; Maniquiz, M.C.; Kim, S.S.; Son, Y.G.; Kim, Y.-T.; Kim, L.-H. Characterization of bottom ash as an adsorbent of lead from aqueous solutions. Environ. Eng. Res. 2010, 15, 3118–3125.
  • Liu, Y.; Naidu, R.; Ming, H. Red mud as an amendment for pollutants in solid and liquid phases. Geoderma 2011, 163, 1–12.
  • Kalmykova, Y.; Stromvall, A.M.; Steenari, B.M. Alternative materials for adsorption of heavy metals and petroleum hydrocarbons from contaminated leachates. Environ. Technol. 2008, 29, 111–122.
  • Shim, Y.-S.; Kim, Y.-K.; Kong, S.-H.; Rhee, S.-W.; Lee, W.-K. The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Manag. 2003, 23, 851–857.
  • Mathieu, J.L.; Gadgil, A.J.; Addy, S.E.A.; Kowolik, K. Arsenic remediation of drinking water using iron-oxide coated coal bottom ash. J. Environ. Sci. Health A. 2010, 45, 1446–1460.
  • Chimenos, J.M.; Segarra, M.; Fernández, M.A.; Espiell, F. Characterization of the bottom ash in municipal solid waste incinerator. J. Hazard. Mater. 1999, 64, 211–222.
  • Chimenos, J.M.; Fernandez, A.I.; Miralles, L.; Segarra, M.; Espiell, F. Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Manag. 2003, 23, 887–895.
  • Wiles, C.C. Municipal solid waste combustion ash: state-of-the-knowledge. J. Hazard. Mater. 1996, 47, 325–344.
  • Chaspoul, F.R.; Le Droguene, M.F.; Barban, G.; Rose, J.C.; Gallice, P.M. A role for adsorption in lead leachability from MSWI bottom ASH. Waste Manage. 2008, 28, 1324–1330.
  • Gorme, J.B.; Maniquiz, M.C.; Kim, S.-S.; Son, Y.-G.; Kim, Y.-T.; Kim, L.-H. Characterization of bottom ash as an adsorbent of lead from aqueous solutions. Environ. Eng. Res. 2010, 15, 207–2013.
  • Freyssinet, P.; Piantone, P.; Azaroual, M.; Itard, Y.; Clozel-Leloup, B.; Guyonnet, D.; Baubron, J.C. Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Manage. 2002, 22, 159–172.
  • Speiser, C.; Baumann, T.; Niessner, R. Characterization of municipal solid waste incineration (MSWI) bottom ash by scanning electron microscopy and quantitative energy dispersive X-ray microanalysis (SEM/EDX). Fresenius J. Anal. Chem. 2001, 370, 5030–5037.
  • Saffarzadeh, A.; Shimaoka, T.; Wei, Y.; Gardner, K.H.; Musselman, C.N. Impacts of natural weathering on the transformation/neoformation processes in landfilled MSWI bottom ash: A geoenvironmental perspective. Waste Manage. 2011, 31, 2440–2454.
  • Gorme, J.B.; Maniquiz-Redillas, M.C.; Kim, L.-H. Development of a stormwater treatment system using bottom ash as filter media. Desalin. Water Treat. 2014, 53, 3118–3125.
  • Cornelis, G.; Gerven, T.V.; Vandecasteele, C. Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation. Waste Manage. 2012, 32, 278–286.
  • Flyhammar, P.; Bendz, D. Leaching of different elements from subbase layers of alternative aggregates in pavement constructions. J. Hazard. Mater. 2006, 137, 603–611.
  • Olsson, S.; Gustafsson, J.P.; Berggren Kleja, D.; Bendz, D.; Persson, I. Metal leaching from MSWI bottom ash as affected by salt or dissolved organic matter. Waste Manage. 2009, 29, 506–512.
  • Ilyas, A.; Lovat, E.; Persson, K. Effects of substrate induced respiration on the stability of bottom ash in landfill cover environment. Waste Manage. Res. 2014, 32, 1241–1246.
  • Ilyas, A.; Martinez, C.M.; Muthanna, T.M. Adsorbents for infiltration based highway stormwater treatment in Norway. Nordic Road Water Project (NORWAT), Traffic, Environment & Technology Division, NPRA-Norwegian Public Road Adminsitration, Oslo Norway. Statens vegvesens rapporter. 2017, 493, pp. 53.
  • FOR-2004-930, Forskrift om gjenvinning og behandling av avfall (avfallsforskriften). In Section 33 https://lovdata.no/dokument/SF/forskrift/2004-06-01-931
  • Naturvårdsverket. Återvinning av avfall i anläggningsarbeten(Reuse of Waste in Construction Work); Swedish Environmental Protection Agency: Stockhom, Sweden, 2010; 151. http://www.naturvardsverket.se/Documents/publikationer/978-91-620-0164-3.pdf
  • SFT. Klassifisering av miljøkvalitet i ferskvann (Classification of Environmental Quality in Freshwater) Bratli, J.L., Ed.; Norwegian Environment Directorate (Previously, SFT): Oslo, Norway; 1997; 31.
  • Arickx, S.; Van Gerven, T.; Boydens, E.; L'hoëst, P.; Blanpain, B.; Vandecasteele, C. Speciation of Cu in MSWI bottom ash and its relation to Cu leaching. Appl. Geochem. 2008, 23, 3642–3650.
  • Piantone, P.; Bodenan, F.; Chatelet-Snidaro, L. Mineralogical study of secondary mineral phases from weathered MSWI bottom ash: Implications for the modelling and trapping of heavy metals. Appl. Geochem. 2004, 19, 1891–1904.
  • Speiser, C.; Baumann, T.; Niessner, R. Morphological and chemical characterization of calcium-hydrate phases formed in alteration processes of deposited municipal solid waste incinerator bottom ash. Environ. Sci. Technol. 2000, 34, 5030–5037.
  • Bruder-Hubscher, V.; Lagarde, F.; Leroy, M.J.F.; Coughanowr, C.; Enguehard, F. Utilisation of bottom ash in road construction: A lysimeter study. Waste Manage. Res. 2001, 21, 557–566.
  • Takahashi, F.; Etoh, J.; Shimaoka, T. Metal mobilization from municipal solid waste incineration bottom ash through metal complexation with organic and inorganic ligands. J. Mater. Cycles Waste Manage. 2010, 12, 1–9.
  • Meima, J.A.; van Zomeren, A.; Comans, R.N.J. Complexation of Cu with dissolved organic carbon in municipal solid waste incinerator bottom ash leachates. Environ. Sci. Technol. 1999, 33, 1424–1429.
  • Guthrie, J.W.; Hassan, N.M.; Salam, M.S.A.; Fasfous, I.I.; Murimboh, C.A.; Murimboh, J.; Chakrabarti, C.L.; Grégoire, D.C. Complexation of Ni, Cu, Zn, and Cd by DOC in some metal-impacted freshwater lakes: A comparison of approaches using electrochemical determination of free-metal-ion and labile complexes and a computer speciation model, WHAM V and VI. Anal. Chim. Acta. 2005, 528, 205–218.
  • Arickx, S.; De Borger, V.; Van Gerven, T.; Vandecasteele, C. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash. Waste Manage. 2010, 30, 1296–1302.
  • Lin, W.Y.; Heng, K.S.; Sun, X.; Wang, J.-Y. Accelerated carbonation of different size fractions of MSW IBA and the effect on leaching. Waste Manage. 2015, 41, 75–84.
  • Meima, J.A.; van der Weijden, R.D.; Eighmy, T.T.; Comans, R.N.J. Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Appl. Geochem. 2002, 17, 1503–1513.
  • Jung, J.; Cho, Y.H.; Hahn, P Comparative study of Cu2+ adsorption on goethite, hematite and kaolinite: Mechanistic modeling approach. Bull. Korean Chem. Soc. 1998, 19, 324–327.
  • Apak, R.; Tütem, E.; Hügül, M.; Hizal, J. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Res. 1998, 32, 430–440.
  • Meima, J.A.; Comans, R.N.J. Application of surface complexation/precipitation modeling to contaminant leaching from weathered municipal solid waste incinerator bottom ash. Environ. Sci. Technol. 1998, 32, 688–693.
  • Dijkstra, J.J.; Van Zomeren, A.; Meeussen, J.C.; Comans, R.N. Effect of accelerated aging of MSWI bottom ash on the leaching mechanisms of copper and molybdenum. Environ. Sci. Technol. 2006, 40, 4481–4487.
  • Gómez del Rıo, J.A.; Morando, P.J.; Cicerone, D.S. Natural materials for treatment of industrial effluents: Comparative study of the retention of Cd, Zn and Co by calcite and hydroxyapatite. Part I: Batch experiments. J. Environ. Manage. 2004, 71, 169–177.
  • Zachara, J.M.; Cowan, C.E.; Resch, C.T. Sorption of divalent metals on calcite. Geochim. Cosmochim. Acta 1991, 55, 1549–1562.
  • Paus, K.H.; Morgan, J.; Gulliver, J.S.; Leiknes, T.; Hozalski, R.M. Effects of Temperature and NaCl on Toxic Metal Retention in Bioretention Media. J. Environ. Eng. 2014, 140, 04014034.
  • Bendz, D.; Suer, P.; Sloot, H.V.D.; Kosson, D.; Flyhammar, P. Modelling of leaching and geochemical processes in an aged MSWIBA subbase layer In MILJÖRIKTIG ANVÄNDNING AV ASKOR; VÄRMEFORSK Service AB 101 53 Stockholm, Sweden; 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.