Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 14
245
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Physically activated charcoal from waste and low-cost biomass: Adsorptive and porosity studies

&
Pages 1341-1351 | Received 22 May 2017, Accepted 27 Jul 2017, Published online: 27 Sep 2017

References

  • Marsh, H.; Rodriguez-Reinoso, F. Activated Carbon; Elsevier, Ltd.:Great Britain, 2006; 536.
  • Suhas Gupta, V.K.; Carrott, P.J.M.; Singh, R.; Chaudhary, M.; Kushwaha, S. Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresour. Technol. 2016, 216, 1066–1076.
  • Gupta, V.K.; Pathania, D.; Sharma, S. Adsorptive remediation of Cu(II) and Ni(II) by microwave assisted H3PO4 activated carbon. Arab. J. Chem. 2017, 10, S2836–S2844.
  • Karmacharya, M.S.; Gupta, V.K.; Tyagi, I.; Agarwal, S.; Jha, V.K. Removal of As(III) and As(V) using rubber tire derived activated carbon modified with alumina composite. J. Mol. Liq. 2016, 216, 836–844.
  • Cao, Y.; Wang, K.; Wang, X.; Gu, Z.; Ambrico, T.; Gibbons, W.; Fan, Q.; Talukder, A.-A. Preparation of active carbons from corn stalk for butanol vapor adsorption. J. Energy Chem. 2016, 26(1), 35–41.
  • Zhu, N.; Yan, T.; Qiao, J.; Cao, H. Synthesis of manganese chloride activated carbon deriving from wheat straw and its adsorption mechanism for arsenic and chromium. J. Environ. Anal. Chem. 2016, 3(1), 1–6.
  • Milenković, D.D.; Bojić, A.L.; Veljković, V.B. Ultrasound-assisted adsorption of 4-dodecylbenzene sulfonate from aqueous solutions by corn cob activated carbon. Ultrason. Sonochem. 2013, 20(3), 955–962.
  • Mazlan, M.A.F.; Uemura, Y.; Yusup, S.; Elhassan, F.; Uddin, A.; Hiwada, A.; Demiya, M. Activated carbon from rubber wood sawdust by carbon dioxide activation. Procedia Eng. 2016, 148, 530–537.
  • Kazemi, F.; Younesi, H.; Ghoreyshi, A.A.; Bahramifar, N.; Heidari, A. Thiol-incorporated activated carbon derived from fir wood sawdust as an efficient adsorbent for the removal of mercury ion: Batch and fixed-bed column studies. Process Saf. Environ. Prot. 2016, 100, 22–35.
  • Heibati, B.; Rodriguez-Couto, S.; Al-Ghouti, M.A.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. J. Mol. Liq. 2015, 208, 99–105.
  • Wang, Z.; Wu, J.; He, T.; Wu, J. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor. Bioresour. Technol. 2014, 167, 551–554.
  • Sun, Y.; Zhang, J.; Yang, G.; Li, Z. Removal of pollutants with activated carbon produced from K2CO3 activation of lignin from reed black liquors. Chem. Biochem. Eng. Q. 2006, 20(4), 429–435.
  • Im, J.S.; Park, S.-J.; Lee, Y.-S. Preparation and characteristics of electrospun activated carbon materials having meso- and macropores. J. Colloid Interface Sci. 2007, 314(1), 32–37.
  • Wang, X.; Li, D.; Li, W.; Peng, J.; Xia, H.; Zhang, L.; Guo, S.; Chen, G. Optimization of mesoporous activated carbon from coconut shells by chemical activation with phosphoric acid. Bioresources 2013, 8(4), 6184–6195.
  • Girgis, B.S.; Ishak, M.F. Activated carbon from cotton stalks by impregnation with phosphoric acid. Mater. Lett. 1999, 39(2), 107–114.
  • Ghosh, G.K. Bamboo: The Wonderful Grass; A.P.H. Publishing corporation: New Delhi, 2008; 423.
  • Summers, M.D.; Jenkins, B.M.; Hyde, P.R.; Williams, J.F.; Scardacci, S.C.; Mutters, R.G. Properties of rice straw as influenced by variety, season and location. 2001 ASAE Annual Meeting, 2001.
  • Ganapathy Sundaram, E.; Natarajan, E. Pyrolysis of coconut shell: An experimental investigation. J. Eng. Res. 2009, 6(2), 33–39.
  • Amaya, A.; Medero, N.; Tancredi, N.; Silva, H.; Deiana, C. Activated carbon briquettes from biomass materials. Bioresour. Technol. 2007, 98(8), 1635–1641.
  • El-Sheikh, A.H.; Newman, A.P.; Al-Daffaee, H.K.; Phull, S.; Cresswell, N. Characterization of activated carbon prepared from a single cultivar of Jordanian olive stones by chemical and physicochemical techniques. J. Anal. Appl. Pyrolysis 2004, 71(1), 151–164.
  • Bouchelta, C.; Medjram, M.S.; Bertrand, O.; Bellat, J.-P. Preparation and characterization of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrolysis 2008, 82(1), 70–77.
  • Cao, Q.; Xie, K.-C.; Lv, Y.-K.; Bao, W.-R. Process effects on activated carbon with large specific surface area from corn cob. Bioresour. Technol. 2006, 97(1), 110–115.
  • Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids J. Am. Chem. Soc. 1916, 38(11), 2221–2295.
  • Freundlich, H.W.H. On adsorption in solution. J. Amer. Chem. Soc. 1939, 61, 2228.
  • Hutson, N.D.; Yang, R.T. Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation. Adsorption 1997, 3(3), 189–195.
  • Mittal, A.; Mittal, J.; Malviya, A.; Kaur, D.; Gupta, V.K. Decoloration treatment of a hazardous triarylmethane dye, light green sf (yellowish) by waste material adsorbents. J. Colloid Interface Sci. 2010, 342(2), 518–527.
  • Yuh-Shan, H. Isotherms for the sorption of lead onto peat: Comparison of linear and non-linear methods. Pol. J. Environ. Stud. 2006, 15(1), 81–86.
  • Weber, T.W.; Chakravorti, R.K. Pore and solid diffusion models for fixed-bed adsorbers. AlChE J. 1974, 20(2), 228–238.
  • Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156(1), 2–10.
  • Vargas, A.M.M.; Cazetta, A.L.; Kunita, M.H.; Silva, T.L.; Almeida, V.C. Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix Regia): Study of adsorption isotherms and kinetic models. Chem. Eng. J. 2011, 168(2), 722–730.
  • Halsey, G.D. The role of surface heterogeneity. Adv. Catal. 1952, 4, 259–269.
  • Dąbrowski, A. Adsorption—From theory to practice. Adv. Colloid Interface Sci. 2001, 93(1–3), 135–224.
  • Tempkin, M.I.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys. Chim. Sin. 1940, 12, 327–356.
  • European Council of Chemical Manufacturers Federation. Test Methods for Activated Carbon, 1986; 47.
  • Yao, M.; Wang, T.; Yao, Z.; Duan, D.; Chen, S.; Liu, Z.; Liu, R.; Lu, S.; Yuan, Y.; Zou, B.; Cui, T.; Liu, B. Pressure-driven topological transformations of iodine confined in one-dimensional channels. J. Phys. Chem. C. 2013, 117(47), 25052–25058.
  • Baçaoui, A.; Yaacoubi, A.; Dahbi, A.; Bennouna, C.; Phan Tan Luu, R.; Maldonado-Hodar, F.J.; Rivera-Utrilla, J.; Moreno-Castilla, C. Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon 2001, 39(3), 425–432.
  • Nunes, C.A.; Guerreiro, M.C. Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers. Quim. Nova. 2011, 34(3), 472–476.
  • Tschamler, H.; de Ruiter, E. Physical properties of coals: Chemistry of Coal Utilization; Lowry H.H., Ed.; John Wiley & Sons Inc.: New York, 1963; 106–118.
  • Sing, K.S.W.; Williams, R.T. The use of molecular probes for the characterization of nanoporous adsorbents. Part. Part. Syst. Char. 2004, 21, 71–79.
  • Rodriguez-Reinoso, F.; Sepúlveda-Escribano, A. Porous carbons in adsorption and catalysis. In Handbook of Surfaces and Interfaces of Materials; Nalva, H. S., Ed.; Academic press: New York, 2001; 309–355.
  • Nagao, M.; Suda, Y. Adsorption of benzene, toluene, and chlorobenzene on titanium dioxide. Langmuir 1989, 5(1), 42–47.
  • Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60(2), 309–319.
  • Hubbard, A.T. Encyclopedia of Surface and Colloid Science; Marcel Dekker, Inc.: New York, 2002; Vol. 1; 358–360.
  • Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Areas and Porosity; Academic Press: London, 1967.
  • Mahanim, S.M.A.; Asma, I.W.; Rafidah, J.; Puad, E.; Shaharuddin, H. Production of activated carbon from industrial bamboo wastes. J. Trop. For. Sci. 2011, 23(4), 417–424.
  • Selvaraju, G.; Bakar, N.K.A. Production of a new industrially viable green-activated carbon from Artocarpus integer fruit processing waste and evaluation of its chemical, morphological and adsorption properties. J. Clean. Prod. 2017, 141, 989–999.
  • Rivera-Utrilla, J.; Sánchez-Polo, M. Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase. Appl. Catal. B. 2002, 39(4), 319–329.
  • Namane, A.; Mekarzia, A.; Benrachedi, K.; Belhaneche-Bensemra, N.; Hellal, A. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. J. Hazard. Mater. 2005, 119(1–3), 189–194.
  • Alonso, A.; Ruiz, V.; Blanco, C.; Santamaría, R.; Granda, M.; Menéndez, R.; de Jager, S.G.E. activated carbon produced from sasol-lurgi gasifier pitch and its application as electrodes in supercapacitors. Carbon 2006, 44(3), 441–446.
  • Ma, X.; Yang, H.; Yu, L.; Chen, Y.; Li, Y. Preparation, surface and pore structure of high surface area activated carbon fibers from bamboo by steam activation. Materials 2014, 7(6), 4431–4441.
  • Yahya, M.A.; Al-Qodah, Z.; Ngah, C.W.Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sust. Energ. Rev 2015, 46, 218–235.
  • Lu, C.; Su, F. Adsorption of natural organic matter by carbon nanotubes. Sep. Purif. Technol. 2007, 58(1), 113–121.
  • Dong, C.; Chen, W.; Liu, C. Preparation of novel magnetic chitosan nanoparticle and its application for removal of humic acid from aqueous solution. Appl. Surf. Sci. 2014, 292, 1067–1076.
  • Wang, J.; Han, X.; Ma, H.; Ji, Y.; Bi, L. Adsorptive removal of humic acid from aqueous solution on polyaniline/attapulgite composite. Chem. Eng. J. 2011, 173(1), 171–177.
  • Wan Ngah, W.S.; Hanafiah, M.A.K.M.; Yong, S.S. Adsorption of humic acid from aqueous solutions on crosslinked chitosan–epichlorohydrin beads: Kinetics and isotherm studies. Colloids Surf. B. 2008, 65(1), 18–24.
  • Daifullah, A.A.M.; Girgis, B.S.; Gad, H.M.H. A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids Surf. A. 2004, 235(1), 1–10.
  • Deng, S.; Bai, R. Adsorption and desorption of humic acid on aminated polyacrylonitrile fibers. J. Colloid Interface Sci. 2004, 280(1), 36–43.
  • Wang, S.; Zhu, Z.H. Humic acid adsorption on fly ash and its derived unburned carbon. J. Colloid Interface Sci. 2007, 315(1), 41–46.
  • Tao, Q.; Xu, Z.; Wang, J.; Liu, F.; Wan, H.; Zheng, S. Adsorption of humic acid to aminopropyl functionalized SBA-15. Microporous Mesoporous Mater. 2010, 131(1), 177–185.
  • Bai, R.; Zhang, X. Polypyrrole-coated granules for humic acid removal. J. Colloid Interface Sci. 2001, 243(1), 52–60.
  • Oskoei, V.; Dehghani, M.H.; Nazmara, S.; Heibati, B.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Removal of humic acid from aqueous solution using uv/zno nano-photocatalysis and adsorption. J. Mol. Liq. 2016, 213, 374–380.
  • Bouras, H.D.; Benturki, O.; Bouras, N.; Attou, M.; Donnot, A.; Merlin, A.; Addoun, F.; Holtz, M.D. The use of an Agricultural Waste Material from Ziziphus jujuba as a novel adsorbent for humic acid removal from aqueous solutions. J. Mol. Liq. 2015, 211, 1039–1046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.