Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 4
352
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Effects of fuel components and combustion particle physicochemical properties on toxicological responses of lung cells

, , , , , , , & show all
Pages 295-309 | Received 08 Jul 2017, Accepted 20 Oct 2017, Published online: 11 Dec 2017

References

  • Jacobson, M. Z. Strong Radiative Heating Due to the Mixing State of Black Carbon in Atmospheric Aerosols. Nature. 2001, 409 (6821), 695–697.
  • Zhang, R.; Khalizov, A. F.; Pagels, J.; Zhang, D.; Xue, H.; McMurry, P. H. Variability in Morphology, Hygroscopicity, and Optical Properties of Soot Aerosols During Atmospheric Processing. Proc. Natl. Acad. Sci. USA. 2008, 105, 10291–10296.
  • Dellinger, B.; D'Alessio, A.; D'Anna, A.; Ciajolo, A.; Gullett, B.; Henry, H.; Keener, M.; Lighty, J.; Lomnicki, S.; Lucas, D., et al. Report: Combustion Byproducts and Their Health Effects: Summary of the 10th International Congress; Mary Ann Liebert, Inc.: NY, USA, 2008; 25.
  • Lighty, J. S.; Veranth, J. M.; Sarofim, A. F. Association Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health. J. Air Waste Manage. Assoc. 2000, 509 (10), 1565–1618. DOI: 10.1080/10473289.2000.10464197.
  • Nemmar, A.; Dhanasekaran, S.; Yasin, J.; Ba-Omar, H.; Fahim, M. A.; Kazzam, E. E.; Ali, B. H. Evaluation of the Direct Systemic and Cardiopulmonary Effects of Diesel Particles in Spontaneously Hypertensive Rats. Toxicology. 2009, 262, 50–56. DOI: 10.1016/j.tox.2009.05.009.
  • Ristovski, Z. D.; Miljevic, B.; Surawski, N. C.; Morawska, L.; Fong, K. M.; Goh, F.; Yang, I. A. Respiratory Health Effects of Diesel Particulate Matter. Respirology. 2012, 17 (2), 201–212.
  • Benbrahim-Tallaa, L.; Baan, R. A.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi; F.; Bouvard, V., Guha; N., Loomis; D., Straif; K. Carcinogenicity of Diesel-Engine and Gasoline-Engine Exhausts and Some Nitroarenes. Lancet Oncol. 2016, 13 (7), 663–664. DOI: 10.1016/S1470-2045(12)70280-2.
  • Gill, S. S.; Turner, D.; Tsolakis, A.; York, A. P. E. Controlling Soot Formation with Filtered EGR for Diesel and Biodiesel Fuelled Engines. Environ. Sci. Technol. 2012, 46 (7), 4215–4222. DOI: 10.1021/es203941n.
  • Annual Energy Outlook 2014 Early release Overview, D.-0383ER (2014). EIA (Energy Information Association).
  • Salvi, A. A.; Assanis, D.; Filipi, Z. Impact of Physical and Chemical Properties of Alternative Fuels on Combustion, Gaseous Emissions, and Particulate Matter During Steady and Transient Engine Operation. Energy Fuels. 2012, 26 (7), 4231–4241. DOI: 10.1021/ef300531r.
  • Lu, T.; Cheung, C. S.; Huang, Z. Investigation on Particulate Oxidation from a DI Diesel Engine Fueled with Three Fuels. Aerosol Sci. Technol. 2012, 46 (12), 1349–1358. DOI: 10.1080/02786826.2012.713534.
  • Kennedy, I. M. The Health Effects of Combustion-Generated Aerosols. Proc. Combust. Inst. 2007, 31 (2), 2757–2770. DOI: 10.1016/j.proci.2006.08.116.
  • Martin, N.; Lombard, M.; Jensen, K. R.; Kelley, P.; Pratt, T.; Traviss, N. Effect of Biodiesel Fuel on “Real-World”, Nonroad Heavy Duty Diesel Engine Particulate Matter Emissions, Composition and Cytotoxicity. Sci. Total Environ. 2017, 586, 409–418. DOI: 10.1016/j.scitotenv.2016.12.041.
  • Xue, J.; Grift, T. E.; Hansen, A. C. Effect of Biodiesel on Engine Performances and Emissions. Renew. Sustain. Energy Rev. 2011, 15 (2), 1098–1116. DOI: 10.1016/j.rser.2010.11.016.
  • Lackey, L. G.; Paulson, S. E. Influence of Feedstock: Air Pollution and Climate-Related Emissions From A Diesel Generator Operating on Soybean, Canola, and Yellow Grease Biodiesel. Energy Fuels. 2012, 26 (1), 686–700. DOI: 10.1021/ef2011904.
  • Surawski, N. C.; Miljevic, B.; Ayoko, G. A.; Elbagir, S.; Stevanovic, S.; Fairfull-Smith, K. E.; Bottle, S. E.; Ristovski, Z. D. Physicochemical Characterization of Particulate Emissions From A Compression Ignition Engine: The Influence of Biodiesel Feedstock. Environ. Sci. Technol. 2011, 45, 10337–10343. DOI: 10.1021/es2018797.
  • Shi, X.; He, K.; Zhang, J.; Ma, Y.; Ge, Y.; Tan, J. A Comparative Study of Particle Size Distribution From Two Oxygenated Fuels and Diesel Fuel. Front Env. Sci. Eng. China. 2010, 4 (1), 30–34.
  • Rahman, M. M.; Pourkhesalian, A. M.; Jahirul, M. I.; Stevanovic, S.; Pham, P. X.; Wang, H.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D. Particle Emissions From Biodiesels With Different Physical Properties And Chemical Composition. Fuel. 2014, 134, 201–208. DOI: 10.1016/j.fuel.2014.05.053.
  • Tzamkiozis, T.; Ntziachristos, L.; Mamakos, A.; Fontaras, G.; Samaras, Z. Aerodynamic and Mobility Size Distribution Measurements to Reveal Biodiesel Effects on Diesel Exhaust Aerosol. Aerosol Sci. Technol. 2011, 45, 587–595. DOI: 10.1080/02786826.2010.550961.
  • Stevanovic, S.; Miljevic, B.; Surawski, N. C.; Fairfull-Smith, K. E.; Bottle, S. E.; Brown, R.; Ristovski, Z. D. Influence of oxygenated organic aerosols (OOAs) on the Oxidative Potential of Diesel and Biodiesel Particulate Matter. Environ. Sci. Technol. 2013, 47, 7655–7662. DOI: 10.1021/es4007433.
  • Pourkhesalian, A. M.; Stevanovic, S.; Salimi, F.; Rahman, M. M.; Wang, H.; Pham, P. X.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D. Influence of Fuel Molecular Structure on the Volatility and Oxidative Potential of Biodiesel Particulate Matter. Environ. Sci. Technol. 2014, 48, 12577–12585. DOI: 10.1021/es503160m.
  • Fukagawa, N. K.; Li, M.; Poynter, M. E.; Palmer, B. C.; Parker, E.; Kasumba, J.; Holmén, B. a. Soy Biodiesel and Petrodiesel Emissions Differ in Size, Chemical Composition and Stimulation of Inflammatory Responses In Cells and Animals. Environ. Sci. Technol. 2013, 47, 12496–12504. DOI: 10.1021/es403146c.
  • Swanson, K. J.; Kado, N. Y.; Funk, W. E.; Pleil, J. D.; Madden, M. C.; Ghio, A. J. Release of the Pro-Inflammatory Markers by BEAS-2B Cells Following In Vitro Exposure to Biodiesel Extracts. Open Toxicol. J. 2009, 3 (1), 8–15. DOI: 10.2174/1874340400903010008.
  • Bhavaraju, L.; Shannahan, J.; William, A.; McCormick, R.; McGee, J.; Kodavanti, U.; Madden, M. Diesel and Biodiesel Exhaust Particle Effects on Rat Alveolar Macrophages With In Vitro Exposure. Chemosphere. 2014, 104, 126–133. DOI: 10.1016/j.chemosphere.2013.10.080.
  • Shvedova, A. A.; Yanamala, N.; Murray, A. R.; Kisin, E. R.; Khaliullin, T.; Hatfield, M. K.; Tkach, A. V.; Krantz, Q. T.; Nash, D.; King, C., et al. Oxidative Stress, Inflammatory Biomarkers, and Toxicity in Mouse Lung and Liver After Inhalation Exposure To 100% Biodiesel Or Petroleum Diesel Emissions. J. Toxicol. Environ. Health. A. 2013, 76 (15), 907–921. DOI: 10.1080/15287394.2013.825217.
  • Yanamala, N.; Hatfield, M. K.; Farcas, M. T.; Schwegler-Berry, D.; Hummer, J. A.; Shurin, M. R.; Birch, M. E.; Gutkin, D. W.; Kisin, E.; Kagan, V. E., et al. Biodiesel Versus Diesel Exposure: Enhanced Pulmonary Inflammation, Oxidative Stress, And Differential Morphological Changes in the Mouse Lung. Toxicol. Appl. Pharmacol. 2013. DOI: 10.1016/j.taap.2013.07.006.
  • Brito, J. M.; Belotti, L.; Toledo, A. C.; Antonangelo, L.; Silva, F. S.; Alvim, D. S.; Andre, P. A.; Saldiva, P. H. N.; Rivero, D. H. R. F. Acute Cardiovascular and Inflammatory Toxicity Induced By Inhalation of Diesel and Biodiesel Exhaust Particles. Toxicol. Sci. 2010, 116 (1), 67–78. DOI: 10.1093/toxsci/kfq107.
  • Krahl, J.; Bunger, J.; Schroder, O.; Munack, A.; Knothe, G. Exhaust Emissions and Health Effects of Particulate Matter From Agricultural Tractors Operating On Rapeseed Oil Methyl Ester. Am. Oil Chem. Soc. 2002, 79 (7), 717–724.
  • Topinka, J.; Milcova, A.; Schmuczerova, J.; Mazac, M.; Pechout, M.; Vojtisek-Lom, M. Genotoxic Potential of Organic Extracts From Particle Emissions of Diesel and Rapeseed Oil Powered Engines. Toxicol. Lett. 2012, 212 (1), 11–17. DOI: 10.1016/j.toxlet.2012.04.017.
  • McDonald, J. D.; Campen, M. J.; Harrod, K. S.; Seagrave, J.; Seilkop, S. K.; Mauderly, J. L. Engine-Operating Load Influences Diesel Exhaust Composition and Cardiopulmonary and Immune Responses. Environ. Health Perspect. 2011, 19 (8), 1136–1141. DOI: 10.1289/ehp.1003101.
  • Lucking, A. J.; Lundbäck, M.; Barath, S. L.; Mills, N. L.; Sidhu, M. K.; Langrish, J. P.; Boon, N. A.; Pourazar, J.; Badimon, J. J.; Gerlofs-Nijland, M. E., et al. Particle Traps Prevent Adverse Vascular and Prothrombotic Effects of Diesel Engine Exhaust Inhalation in Men Clinical Perspective. Circulation. 2011, 123 (16), 1721–1728.
  • Farraj, A. K.; Haykal-Coates, N.; Winsett, D. W.; Gilmour, M. I.; King, C.; Krantz, Q. T.; Richards, J.; Hazari, M. S. Comparative Electrocardiographic, Autonomic And Systemic Inflammatory Responses To Soy Biodiesel And Petroleum Diesel Emissions In Rats. Inhal Toxicol. 2015, 27 (11), 564–575. DOI: 10.3109/08958378.2015.1057884.
  • Saathoff, H.; Moehler, O.; Schurath, U.; Kamm, S.; Dippel, B.; Mihelcic, D. The AIDA Soot Aerosol Characterisation Campaign 1999. J. Aerosol Sci. 2003, 34, 1277–1296. DOI: 10.1016/S0021-8502(03)00363-X.
  • McDonald, J. D.; Harrod, K. S.; Seagrave, J. C.; Seilkop, S. K.; Mauderly, J. L. Effects of Low Sulfur Fuel and A Catalyzed Particle Trap On the Composition and Toxicity of Diesel Emissions. Environ. Health Perspect. 2004, 112 (13), 1307–1312. DOI: 10.1289/ehp.7059.
  • Bonvallot, V.; Baeza-Squiban, A.; Baulig, A.; Brulant, S.; Boland, S.; Muzeau, F.; Barouki, R.; Marano, F. Organic Compounds From Diesel Exhaust Particles Elicit A Proinflammatory Response In Human Airway Epithelial Cells and Induce Cytochrome p450 1A1 Expression. Am. J. Respir. Cell Mol. Biol. 2001, 25 (17), 515–521.
  • Totlandsdal, A. I.; Refsnes, M.; Låg, M. Mechanisms Involved In Ultrafine Carbon Black-Induced Release of IL-6 from Primary Rat Epithelial Lung Cells. Toxicol. Vitr. 2010, 24 (1), 10–20. DOI: 10.1016/j.tiv.2009.09.016.
  • Vogel, C. F. A.; Sciullo, E.; Wong, P.; Kuzmicky, P.; Kado, N.; Matsumura, F. Induction of Proinflammatory Cytokines and C-Reative Protein In Human Macrophage Cell Line U937 Exposed to Air Pollution Particulates. Environ. Health Perspect. 2005, 113 (11), 1536–1541. DOI: 10.1289/ehp.8094.
  • Nebert, D. W.; Dalton, T. P.; Okey, A. B.; Gonzalez, F. J. Role of Aryl Hydrocarbon Receptor-Mediated Induction of the CYP1 Enzymes In Environmental Toxicity and Cancer. J. Biol. Chem. 2004, 279 (23), 23847–23850. DOI: 10.1074/jbc.R400004200.
  • Øvrevik, J.; Refsnes, M.; Låg, M.; Holme, J.; Schwarze, P. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules. 2015, 5 (3), 1399–1440. DOI: 10.3390/biom5031399.
  • Deering-Rice, C. E.; Romero, E. G.; Shapiro, D.; Hughen, R. W.; Light, A.; Yost, G. S.; Veranth, J. M.; Reilly, C. A. Electrophilic Components of Diesel Exhaust Particles (DEP) Activate Transient Receptor Potential Ankyrin-1 (TRPA1): Probable Mechanism of Acute Pulmonary Toxicity for DEP. Chem. Res. Toxicol. 2012, 24 (6), 950–959. DOI: 10.1021/tx200123z.Electrophilic.
  • Shapiro, D.; Deering-Rice, C. E.; Romero, E. G.; Hughen, R. W.; Light, A. R.; Veranth, J. M.; Reilly, C. A. Activation of Transient Receptor Potential Ankyrin-1 (TRPA1) in Lung Cells By Wood Smoke Particulate Material. Chem. Res. Toxicol. 2013, 26 (5), 750–758. DOI: 10.1021/tx400024h.
  • Echavarria, C. A.; Sarofim, A. F.; Lighty, J. S.; D'Anna, A. Modeling and Measurements of Size Distributions in Premixed Ethylene and Benzene Flames. Proc. Combust. Inst. 2009, 32 (1), 705–711.
  • Echavarria, C. A.; Sarofim, A. F.; Lighty, J. S.; D'Anna, A. Evolution of Soot Size Distribution In Premixed Ethylene/Air And Ethylene/Benzene/Air Flames: Experimental and Modeling Study. Combust. Flame. 2011, 158 (1), 98–104. DOI: 10.1016/j.combustflame.2010.07.021.
  • Jaramillo, I. C.; Gaddam, C. K.; Vander Wal, R. L.; Huang, C. H.; Levinthal, J. D.; Lighty, J. S. Soot Oxidation Kinetics Under Pressurized Conditions. Combust. Flame. 2014, 161 (11), 2951–2965. DOI: 10.1016/j.combustflame.2014.04.016.
  • Ghiassi, H.; Toth, P.; Lighty, J. S. Sooting Behaviors of n-Butanol and n-Dodecane Blends. Combust. Flame. 2014, 161 (3), 671–679. DOI: 10.1016/j.combustflame.2013.10.011.
  • Camacho, J.; Lieb, S.; Wang, H. Evolution of Size Distribution of Nascent Soot in N- and I-Butanol Flames. Proc. Combust. Inst. 2013, 34 (1), 1853–1860. DOI: 10.1016/j.proci.2012.05.100.
  • Camacho, J.; Tao, Y.; Wang, H. Kinetics of Nascent Soot Oxidation by Molecular Oxygen in a Flow Reactor. Proc. Combust. Inst. 2015, 35 (2), 1887–1894. DOI: 10.1016/j.proci.2014.05.095.
  • Abid, A. D.; Camacho, J.; Sheen, D. A.; Wang, H. Quantitative Measurement of Soot Particle Size Distribution In Premixed Flames – The Burner-Stabilized Stagnation Flame Approach. Combust. Flame. 2009, 156 (10), 1862–1870. DOI: 10.1016/j.combustflame.2009.05.010.
  • Penn, A.; Murphy, G.; Barker, S.; Henk, W.; Penn, L. Combustion-Derived Ultrafine Particles Transport Organic Toxicants to Target Respiratory Cells. Environ. Health Perspect. 2005, 113 (8), 956–963. DOI: 10.1289/ehp.7661.
  • McEnally, C.; Köylü, Ü.; Pfefferle, L.; Rosner, D. Soot Volume Fraction and Temperature Measurements In Laminar Nonpremixed Flames Using Thermocouples. Combust. Flame. 1997, 109 (4), 701–720.
  • Ku, B. K.; Kulkarni, P. Comparison of Diffusion Charging and Mobility-based Methods for Measurement of Aerosol Agglomerate Surface Area. J. Aerosol Sci. 2016, 7, 100–110. DOI: 10.1016/j.jaerosci.2012.01.002.
  • Agarwal, A. K.; Gupta, T.; Kothari, A. Particulate Emissions From Biodiesel Vs Diesel Fuelled Compression Ignition Engine. Renew. Sustain. Energy Rev. 2011, 15 (6), 3278–3300. DOI: 10.1016/j.rser.2011.04.002.
  • Agarwal, A. K.; Singh, A. P.; Lukose, J.; Gupta, T. Characterization of Exhaust Particulates From Diesel Fueled Homogenous Charge Compression Ignition Combustion Engine. J. Aerosol Sci. 2013, 58, 71–85. DOI: 10.1016/j.jaerosci.2012.12.005.
  • Stabile, L.; Buonanno, G.; Ficco, G.; Scungio, M. Smokers' Lung Cancer Risk Related to the Cigarette-Generated Mainstream Particles. J. Aerosol Sci. 2017, 107, 41–54. DOI: 10.1016/j.jaerosci.2017.02.005.
  • Jaramillo, I. C.; Gaddam, C. K.; Vander Wal, R. L.; Lighty, J. S. Effect of Nanostructure, Oxidative Pressure and Extent of Oxidation on Model Carbon Reactivity. Combust. Flame. 2015, 162 (5), 1848–1856. DOI: 10.1016/j.combustflame.2014.12.006.
  • Hermanns, M. I.; Unger, R. E.; Kehe, K.; Peters, K.; Kirkpatrick, C. J. Lung Epithelial Cell Lines in Coculture With Human Pulmonary Microvascular Endothelial Cells: Development of An Alveolo-Capillary Barrier In Vitro. Lab. Invest. 2004, 84 (6), 736–752 DOI: 10.1038/labinvest.3700081.
  • Salomon, J. J.; Muchitsch, V. E.; Gausterer, J. C.; Schwagerus, E.; Huwer, H.; Daum, N.; Lehr, C. M.; Ehrhardt, C. The Cell Line NCl-H441 is a Useful In Vitro Model for Transport Studies of Human Distal Lung Epithelial Barrier. Mol. Pharm. 2014, 11, 995–1006. DOI: 10.1021/mp4006535.
  • Daigneault, M.; Preston, J. A.; Marriott, H. M.; Whyte, M. K. B.; Dockrell, D. H. The Identification of Markers of Macrophage Differentiation In PMA-Stimulated Thp-1 Cells and Monocyte-Derived Macrophages. PLoS One. 2010, 5 (1), e8668. DOI: 10.1371/journal.pone.0008668.
  • O'Reilly, M. A.; Gazdar, A. F.; Clark, J. C.; Pilot-Matias, T. J.; Wert, S. E.; Hull, W. M.; Whitsett, J. A. Glucocorticoids Regulate Surfactant Protein Synthesis In A Pulmonary Adenocarcinoma Cell Line. Am. J. Physiol. – Lung Cell. Mol. Physiol. 1989, 257 (6), L385–L392.
  • Cho, A.; Sioutas, C.; Miguel, A.; Kumagai, Y.; Schmitz, D.; Singh, M.; Eiguren-Fernandez, A; Froines, J. Redox Activity of Airborne Particulate Matter at Different Sites In the Los Angeles Basin. Env. Res. 2005, 99 (1), 40–47.
  • Harris, S. J.; Maricq, M. M. Signature Size Distributions for Diesel and Gasoline Engine Exhaust Particulate Matter. J. Aerosol Science. 2001, 32, 749–764.
  • Maricq, M. M.; Xu, N. The Effective Density and Fractal Dimension of Soot Particles From Premixed Flames and Motor Vehicle Exhaust. J. Aerosol Sci. 2004, 35, 1251–1274. DOI: 10.1016/j.jaerosci.2004.05.002.
  • Matti Maricq, M. Chemical Characterization of Particulate Emissions From Diesel Engines: A review. J. Aerosol Sci. 2007, 38 (11), 1079–1118. DOI: 10.1016/j.jaerosci.2007.08.001.
  • Schwarze, P. E.; Totlandsdal, A. I.; Låg, M.; Refsnes, M.; Holme, J. A.; Øvrevik, J. Inflammation-Related Effects of Diesel Engine Exhaust Particles: Studies on Lung Cells In Vitro. Hindawi Publ. Corp. BioMed Res. Int. 2013, 2013, 1–14.
  • Totlandsdal, A. I.; Øvrevik, J.; Cochran, R. E.; Herseth, J.-I.; Bølling, A. K.; Låg, M.; Schwarze, P.; Lilleaas, E.; Holme, J. A.; Kubátová, A. The Occurrence of Polycyclic Aromatic Hydrocarbons and Their Derivatives and the Proinflammatory Potential of Fractionated Extracts of Diesel Exhaust and Wood Smoke Particles. J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 2014, 49 (4), 383–396. DOI: 10.1080/10934529.2014.854586.
  • Li, N.; Xia, T.; Nel, A. E. The Role of Oxidative Stress in Ambient Particulate Matter-Induced Lung Diseases and Its Implications In the Toxicity of Engineered Nanoparticles. Free Radic. Biol. Med. 2008, 44 (9), 1689–1699. DOI: 10.1016/j.freeradbiomed.2008.01.028.
  • Donaldson, K.; Stone, V.; Borm, P. J. A.; Jimenez, L. A.; Gilmour, P. S.; Schins, R. P. F.; Knaapen, A. M.; Rahman, I.; Faux, S. P.; Brown, D. M., et al. Oxidative Stress and Calcium Signaling in the Adverse Effects of Environmental Particles (PM10). Free Radic. Biol. Med. 2003, 34 (11), 1369–1382. DOI: 10.1016/S0891-5849(03)00150-3.
  • González-Flecha, B. Oxidant Mechanisms in Response to Ambient Air Particles. Mol. Aspects Med. 2004, 25 (1–2), 169–182. DOI: 10.1016/j.mam.2004.02.017.
  • Mazzoli-Rocha, F.; Fernandes, S.; Einicker-Lamas, M.; Zin, W. A. Roles of Oxidative Stress in Signaling and Inflammation Induced by Particulate Matter. Cell Biol. Toxicol. 2010, 26 (5), 481–498. DOI: 10.1007/s10565-010-9158-2.
  • Totlandsdal, A. I.; Cassee, F. R.; Schwarze, P.; Refsnes, M.; Låg, M. Diesel Exhaust Particles Induce Cyp1a1 and Pro-Inflammatory Responses Via Differential Pathways In Human Bronchial Epithelial Cells. Part. Fibre Toxicol. 2010, 7 (1), 41. DOI: 10.1186/1743-8977-7-41.
  • Andrysík, Z.; Procházková, J.; Kabátková, M.; Umannová, L.; Simečková, P.; Kohoutek, J.; Kozubík, A.; Machala, M.; Vondráček, J. Aryl hydrocarbon Receptor-Mediated Disruption of Contact Inhibition is Associated With Connexin43 Downregulation and Inhibition of Gap Junctional Intercellular Communication. Arch. Toxicol. 2013, 87 (3), 491–503. DOI: 10.1007/s00204-012-0963-7.
  • Kumfer, B.; Kennedy, I. The Role of Soot in the Health Effects of Inhaled Airborne Particles. In Proceedings of an international workshop held in villa Orlandi, Anacapri, May 13–16; Bockhorn H., D'Anna A., Sarofim A.F., Wang H., eds.; Karlsruhe University Press: Karlsruhe, Germany , 2007; pp 1–15.
  • Attia, S. M. Deleterious Effects of Reactive Metabolites. Oxid. Med. Cell. Longev. 2010, 3 (4), 238–253. DOI: 10.4161/oxim.3.4.13246.
  • Sadiktsis, I.; Koegler, J. H.; Benham, T.; Bergvall, C.; Westerholm, R. Particulate Associated Polycyclic Aromatic Hydrocarbon Exhaust Emissions From A Portable Power Generator Fueled With Three Different Fuels – A Comparison Between Petroleum Diesel And Two Biodiesels. Fuel. 2014, 115, 573–580. DOI: 10.1016/j.fuel.2013.07.062.
  • Zhang, Z. H.; Balasubramanian, R. Physicochemical and Toxicological Characteristics of Particulate Matter Emitted From A Non-Road Diesel Engine: Comparative Evaluation of Biodiesel-Diesel And Butanol-Diesel Blends. J. Hazard. Mater. 2014, 264, 395–402. DOI: 10.1016/j.jhazmat.2013.11.033.
  • Till, M.; Riebniger, D.; Schmitz, H. J.; Schrenk, D. Potency of Various Polycyclic Aromatic Hydrocarbons As Inducers of CYP1A1 in rat Hepatocyte Cultures. Chem. Biol. Interact. 1999, 117 (2), 135–150. DOI: 10.1016/S0009-2797(98)00105-7.
  • Li, N.; Hao, M.; Phalen, R. F.; Hinds, W. C.; Nel, A. E. Particulate air Pollutants and Asthma: A Paradigm for the Role of Oxidative Stress In Pm-Induced Adverse Health Effects. Clin. Immunol. 2003, 109 (3), 250–265. DOI: 10.1016/j.clim.2003.08.006.
  • Deng, X.; Zhang, F.; Rui, W.; Long, F.; Wang, L.; Feng, Z.; Chen, D.; Ding, W. PM2.5-Induced Oxidative Stress Triggers Autophagy In Human Lung Epithelial A549 Cells. Toxicol. Vitr. 2013, 27 (6), 1762–1770. DOI: 10.1016/j.tiv.2013.05.004.
  • Kocbach, A.; Totlandsdal, A. I.; Låg, M.; Refsnes, M.; Schwarze, P. E. Differential Binding of Cytokines to Environmentally Relevant Particles: A Possible Source For Misinterpretation of In Vitro Results? Toxicol. Lett. 2008, 176 (2), 131–137. DOI: 10.1016/j.toxlet.2007.10.014.
  • Patel, H.; Eo, S.; Kwon, S. Effects of Diesel Particulate Matters on Inflammatory Responses In Static And Dynamic Culture of Human Alveolar Epithelial Cells. Toxicol. Lett. 2011, 200 (1–2), 124–131. DOI: 10.1016/j.toxlet.2010.11.007.
  • Tal, T. L.; Simmons, S. O.; Silbajoris, R.; Dailey, L.; Cho, S. H.; Ramabhadran, R.; Linak, W.; Reed, W.; Bromberg, P. A.; Samet, J. M. Differential Transcriptional Regulation Of Il-8 Expression By Human Airway Epithelial Cells Exposed To Diesel Exhaust Particles. Toxicol. Appl. Pharmacol. 2010, 243 (1), 46–54. DOI: 10.1016/j.taap.2009.11.011.
  • Reilly, C. A. The Role of TRP Channels In the Lung. In Comprehensive Toxicology, McQueen, C. A., ed.; Elsevier: Oxford, UK, 2010; pp 129–149.
  • Lanosa, M. J.; Willis, D. N.; Jordt, S.; Morris, J. B. Role of Metabolic Activation and the TRPA1 Receptor In the Sensory Irritation Response to Styrene and Naphthalene. Toxicol. Sci. 2010, 115 (2), 589–595. DOI: 10.1093/toxsci/kfq057.
  • Hussain, S.; Boland, S.; Baeza-Squiban, A.; Hamel, R.; Thomassen, L. C. J.; Martens, J. A.; Billon-Galland, M. A.; Fleury-Feith, J.; Moisan, F.; Pairon, J. C., et al. Oxidative Stress and Proinflammatory Effects of Carbon Black and Titanium Dioxide Nanoparticles: Role of Particle Surface Area and Internalized Amount. Toxicology. 2009; 260 (1–3), 142–149. DOI: 10.1016/j.tox.2009.04.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.