Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 4
197
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Improved salt removal and power generation in a cascade of two hydraulically connected up-flow microbial desalination cells

&
Pages 326-337 | Received 11 Jul 2017, Accepted 24 Oct 2017, Published online: 27 Dec 2017

References

  • Du, Z.; Li, H.; Gu, T. A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy. Biotechnol. Adv. 2007, 25, 464–482. DOI:10.1016/j.biotechadv.2007.05.004.
  • Sevda, S.; Dominguez-Benetton, X.; Vanbroekhoven, K.; Wever, H.D.; Sreekrishnan, T.R.; Pant, D. High Strength Wastewater Treatment Accompanied by Power Generation Using Air Cathode Microbial Fuel Cell. Appl. Energy. 2013, 194–206. DOI:10.1016/j.apenergy.2012.12.037.
  • Sevda, S.; Dominguez-Benetton, X.; Vanbroekhoven, K.; Sreekrishnan, T.R.; Pant, D. Characterization and Comparison of the Performance of Two Different Separator Types in Air–Cathode Microbial Fuel Cell Treating Synthetic Wastewater. Chem. Eng. J. 2013, 228, 1–11. DOI:10.1016/j.cej.2013.05.014.
  • Sevda, S.; Sreekrishnan, T.R. Effect of Salt Concentration and Mediators in Salt Bridge Microbial Fuel Cell For Electricity Generation From Synthetic Wastewater. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2012, 47, 878–886. DOI:10.1080/10934529.2012.665004.
  • Li, W.W.; Yu, H.Q.; He, Z. Towards Sustainable Wastewater Treatment by Using Microbial Fuel Cells-Centered Technologies. Energy Environ. Sci. 2014, 7, 911–924. DOI:10.1039/C3EE43106A.
  • Sevda, S.B.; Abu-Reesh, I.M.; He, Z. Bioelectricity Generation From Treatment of Petroleum Refinery Wastewater With Simultaneous Seawater Desalination in Microbial Desalination Cells. Energy Convers. Manage. 2016, 141, 101–107. DOI:10.1016/j.enconman.2016.05.050.
  • Sevda, S.B.; Abu Reesh, I.M. Energy Production in Microbial Desalination Cell and Its Effect on Desalination. J. Energy Environ. Sustain. 2017, 3, 53–58.
  • Sevda, S.; Yuan, H.; He, Z.; Abu-Reesh, I. M. Microbial Desalination Cells as a Versatile Technology: Functions, Optimization and Prospective. Desalination. 2015, 371, 9–17. DOI:10.1016/j.desal.2015.05.021.
  • Cao, X.; Huang, X.; Liang, P.; Xiao, K.; Zhou, Y.; Zhang, X.; Logan, B. E. A new method for water desalination using microbial desalination cells. Environ. Sci. Technol. 2009, 43, 7148–7152. doi:10.1021/es901950j.
  • Qu, Y.; Feng, Y.; Wang, X.; Liu, J.; Lv, J.; He, W.; Logan, B. E. Simultaneous Water Desalination and Electricity Generation in a Microbial Desalination Cell With Electrolyte Recirculation for pH Control. Bioresour. Technol. 2012, 106, 89–94. DOI:10.1016/j.biortech.2011.11.045.
  • ElMekawy, A.; Hegab, H.M.; Pant, D. The Near-Future Integration of Microbial Desalination Cells With Reverse Osmosis Technology. Energy Environ. Sci. 2012, 7, 3921–3933. DOI:10.1039/C4EE02208D.
  • Ping, Q.; He, Z. Improving the Flexibility of Microbial Desalination Cells Through Spatially Decoupling Anode and Cathode. Bioresour. Technol. 2013, 144, 304–310. DOI:10.1016/j.biortech.2013.06.117.
  • Ping, Q.; Zhang, C.; Chen, X.; Zhang, B.; Huang, Z.; He, Z. Mathematical Model of Dynamic Behavior of Microbial Desalination Cells for Simultaneous Wastewater Treatment and Water Desalination. Environ. Sci. Technol. 2014, 48, 13010–13019. DOI:10.1021/es504089x.
  • Jacobson, K. S.; Drew, D. M.; He, Z. Efficient Salt Removal in a Continuously Operated Upflow Microbial Desalination Cell With an Air Cathode. Bioresour. Technol. 2011, 102, 376–380. DOI:10.1016/j.biortech.2010.06.030.
  • Xi, C.; Xia, X.; Liang, P.; Cao, X.; Sun, H.; Huang, X. Stacked Microbial Desalination Cells to Enhance Water Desalination Efficiency. Environ. Sci. Technol. 2011, 45, 2465–2470. doi:10.1021/es103406m.
  • Kristen, S.; He, Z. Water Softening Using Microbial Desalination Cell Technology. Desalination. 2013, 309, 32–37. DOI:10.1016/j.desal.2012.09.015.
  • Jacobson, K.S.; Drew, D.M.; He, Z. Efficient Salt Removal in a Continuously Operated Upflow Microbial Desalination Cell With an Air Cathode. Bioresour. Technol. 2011, 102, 376–380. DOI:10.1016/j.biortech.2010.06.030.
  • Qu, Y.; Feng, Y.; Wang, X.; Liu, J.; Lv, J.; He, W.; Logan, B.E. Simultaneous Water Desalination and Electricity Generation in a Microbial Desalination Cell With Electrolyte Recirculation for pH control. Bioresour. Technol. 2012, 106, 89–94. DOI:10.1016/j.biortech.2011.11.045.
  • Khawaji, A.D.; Kutubkhanah, I.K.; Wie, J.M. Advances in Seawater Desalination Technologies. Desalination. 2008, 221, 47–69. DOI:10.1016/j.desal.2007.01.067.
  • Mathioulakis, E.; Belessiotis, V.; Delyannis, E. Desalination by Using Alternative Energy: Review and State-Of-Art. Desalination. 2007, 203, 346–365. DOI:10.1016/j.desal.2006.03.531.
  • Bajracharya, S.; Sharma, M.; Mohanakrishna, G.; Benneton, X. D.; Strik, D.P.B.T.B.; Sarma, P.M.; Pant, D. An Overview on Emerging Bio Electrochemical Systems (BESs): Technology for Sustainable Electricity, Waste Remediation, Resource Recovery, Chemical Production and Beyond. Renew. Energy. 2016, 98, 153–170. DOI:10.1016/j.renene.2016.03.002.
  • Aelterman, P.; Rabaey, K.; Pham, H.T.; Boon, N.; Verstraete, W. Continuous Electricity Generation at High Voltages and Currents Using Stacked Microbial Fuel Cells. Environ. Sci. Technol. 2006, 40, 3388–3394. DOI:10.1021/es0525511.
  • He, Z.; Minteer, S.D.; Angenent, L.T. Electricity Generation From Artificial Wastewater Using an Upflow Microbial Fuel Cell. Environ. Sci. Technol. 2005, 39, 5262–5267. doi:10.1021/es0502876.
  • Huang, C.H.; Xu, T.W. 2006. Electrodialysis With Bipolar Membranes for Sustainable Development. Environ. Sci. Technol. 2006, 40, 5233–5243. DOI:10.1021/es060039p.
  • Mathioulakis, E.; Belessiotis, V.; Delyannis, E. Desalination by Using Alternative Energy: Review and State-Of-Art. Desalination. 2007, 203, 346–365. DOI:10.1016/j.desal.2006.03.531.
  • Mohanakrishna, G.; Venkata Mohan, S.; Sarma, P.N. Bio-electrochemical Treatment of Distillery Wastewater in Microbial Fuel Cell Facilitating Decolorization and Desalination Along With Power Generation. J. Hazard. Mater. 2010, 177, 487–494. DOI:10.1016/j.jhazmat.2009.12.059.
  • Ledezma, P.; Greenman, J.; Ieropoulos, I. MFC-cascade Stacks Maximise COD Reduction and Avoid Voltage Reversal Under Adverse Conditions. Bioresour. Technol. 2013, 134, 158–165. DOI:10.1016/j.biortech.2013.01.119.
  • Kim, Y.; Logan, B. E. Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination. Environ. Sci. Technol. 2011, 45, 5840–5845. DOI:10.1021/es200584q.
  • Chen, X.; Xia, X.; Liang, P.; Cao, X.; Sun, H.; Huang, X. Stacked Microbial Desalination Cells to Enhance Water Desalination Efficiency. Environ. Sci. Technol. 2011, 45, 2465–2470. DOI:10.1021/es103406m.
  • APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association/American water works Association/Water environment federation: Washington DC, 1998; 1–530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.