Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 4
400
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Microbial composition of biofilm treating wastewater rich in bisphenol A

&
Pages 385-392 | Received 01 Aug 2017, Accepted 07 Nov 2017, Published online: 27 Nov 2017

References

  • Kovacic, P. How safe is bisphenol A? Fundamentals of toxicity: Metabolism, electron transfer and oxidative stress. Med. Hypotheses. 2010, 75, 1–4. doi:10.1016/j.mehy.2010.03.002.
  • Vilchez, J.-L.; Zafra, A.; González-Casado, A.; Hontoria, E.; del Olmo, M. Determination of trace amounts of bisphenol F, bisphenol A and their diglycidyl ethers in wastewater by gas chromatography-mass spectrometry. Anal. Chim. Acta. 2001, 431, 31–40. doi:10.1016/S0003-2670(00)01315-5.
  • Jackson, J.; Sutton, R. Sources of endocrine-disrupting chemicals in urban wastewater, Oakland, CA. Sci. Total Environ. 2008, 405, 153–160. doi:10.1016/j.scitotenv.2008.06.033.
  • Cousins, I.T.; Staples, C.-A.; Klečka, G.-M.; Mackay, D. A multimedia assessment of the environmental fate of Bisphenol A. Human Ecol. Risk Assess. 2002, 8, 1107–1135. doi:10.1080/1080-700291905846.
  • Roh, H.; Subramanya, N.; Zhao, F.; Yu, C.-P.; Sandt, J.; Chu, K.-H. Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria. Chemosphere. 2009, 77, 1084–1089. doi:10.1016/j.chemosphere.2009.08.049.
  • Nie, Y.; Qiang, Z.; Zhang, H.; Ben, W. Fate and seasonal variation of endocrine-disrupting chemicals in a sewage treatment plant with A/A/O process. Sep. Purif. Technol. 2012, 84, 9–15. doi:10.1016/j.seppur.2011.01.030.
  • Kang, J.-H.; Kondo, F. Effects of bacterial counts and temperature on the biodegradation of bisphenol A in river water. Chemosphere. 2002, 49, 493–498. doi:10.1016/S0045-6535(02)00315-6.
  • Kang, J.-H.; Katayama, Y.; Kondo, F. Biodegradation or metabolism of bisphenol A: From microorganisms to mammals. Toxicology. 2006, 217, 81–90. doi:10.1016/j.tox.2005.10.001.
  • Li, G.; Zu, L.; Wong, P.-K.; Hui, X.; Lu, Y.; Xiong, J.; An, T. Biodegradation and detoxification of bisphenol A with one newly-isolate strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic addition. Bioresour. Technol. 2012, 114, 224–230. doi:10.1016/j.biortech.2012.03.067.
  • Masuda, M.; Yamasaki, Y.; Ueno, S.; Inoue, A. Isolation of bisphenol A-tolerant/degrading Pseudomonas monteilii strain N-502. Extremophiles. 2007, 11, 355–362. doi:10.1007/s00792-006-0047-9.
  • Kamaraj, M.; Rajeshwari, S.; Venckatesh, R. Biodegradation of bisphenol A by the tolerant bacterial species isolated from coastal regions of Chennai, Tamil Nadu, India. Int. Biodeterior. Biodegradation. 2014, 93, 216–222. doi:10.1016/j.ibiod.2014.02.014.
  • Spivack, J.; Leib, T.-K.; Lobos, J.-H. Novel pathway for bacterial metabolism of bisphenol. A. J. Biol. Chem. 1994, 269, 7323–7329.
  • Huang, Q.; Weber, J.-W. Transformation and removal of bisphenol A from aqueous phase via peroxidase-mediated oxidative coupling reactions: Efficacy, products, and pathways. Environ. Sci. Technol. 2005, 39, 6029–6036. doi:10.1021/es050036x.
  • Telke, A.-A.; Kalyani, D.-C.; Jadhav, U.-U.; Parshetti, G.-K.; Govindwar, S.-P. Purification and characterization of an extracellular laccase from a Pseudomonas sp. LBC1 and its application for the removal of bisphenol A. J. Mol. Catal. B-Enzym. 2009, 61, 252–260. doi:10.1016/j.molcatb.2009.08.001.
  • Malik, S.; Beer, M.; Megharaj, M.; Naidu, R. The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ. Int. 2008, 34, 265–276. doi:10.1016/j.envint.2007.09.001.
  • Wu, Y.; Li, T.; Yang, L. Mechanisms of removing pollutants from aqueous solutions by microorganisms and their aggregates: A review. Bioresour. Technol. 2012, 107, 10–18. doi:10.1016/j.biortech.2011.12.088.
  • Clara, M.; Kreuzinger, N.; Strenn, B.; Gans, O.; Kroiss, H. The solids retention time: A suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Res. 2005, 39, 97–106. doi:10.1016/j.watres.2004.08.036.
  • Zielińska, M.; Cydzik-Kwiatkowska, A.; Bernat, K.; Bułkowska, K.; Wojnowska-Baryła, I. Removal of bisphenol A (BPA) in a nitrifying system with immobilized biomass. Bioresour. Technol. 2014, 171, 305–313. doi:10.1016/j.biortech.2014.08.087.
  • Seyhi, B.; Drogui, P.; Buelna, G.; Blais, J.F. Removal of bisphenol-A from spiked synthetic effluents using an immersed membrane activated sludge process. Sep. Purif. Technol. 2012, 87, 101–109. doi:10.1016/j.seppur.2011.11.029.
  • Melcer, H.; Klečka, G. Treatment of wastewaters containing bisphenol A: State of the science review. Water Environ. Res. 2011, 83, 650–666. doi:10.2175/106143010X12851009156925.
  • Edgar, R.-C.; Haas, B.-J.; Clemente, J.-C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. doi:10.1093/bioinformatics/btr381.
  • Edgar, R.-C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010, 26, 2460–2461. doi:10.1093/bioinformatics/btq461.
  • Nawrocki, E.-P.; Eddy, S.-R. Infernal 1.1, 100-fold faster RNA homology searches. Bioinformatics 2013, 29, 2933–2935. doi:10.1093/bioinformatics/btt509.
  • Chao, A.; Chazdon, R.-L.; Colwell, R.-K.; Shen, T.-J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 2006, 62, 361–371. doi:10.1111/j.1541-0420.2005.00489.x.
  • Sakai, K.; Yamanaka, H.; Moriyoshi, K.; Ohmoto, T.; Ohe, T. Biodegradation of bisphenol A and related compounds by Sphingomonas sp. strain BP-7 isolated from seawater. Biosci. Biotechnol. Biochem. 2007, 71, 51–57. doi:10.1271/bbb.60351.
  • Liao, R.; Li, Y.; Wang, Z.; Miao, Y.; Shen, K.; Shi, P.; Ma, Y.; Li, W.; Li, A.-M. 454 pyrosequencing analysis on microbial diversity of an expanded granular sludge bed reactor treating high NaCl and nitrite concentration wastewater. Biotech. Bioprocess Eng. 2014, 19, 183–190. doi:10.1007/s12257-013-0387-0.
  • Yang, Y.; Wang, Z.; Xie, S. Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change. Sci. Total Environ. 2014, 470–471, 1184–1188.
  • Cydzik-Kwiatkowska, A.; Bernat, K.; Zielińska, M.; Bułkowska, K.; Wojnowska-Baryła, I. Aerobic granular sludge for bisphenol A (BPA) removal from wastewater. Int. Biodeterior. Biodegradation. 2017, 122, 1–11. doi:10.1016/j.ibiod.2017.04.008.
  • Wang, X.; Hu, M.; Xia, Y.; Wen, X.; Ding, K. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl. Environ. Microbiol. 2012, 78, 7042–7047. doi:10.1128/AEM.01617-12.
  • Ma, Q.; Qu, Y.; Shen, W.; Zhang, Z.; Wang, J.; Liu, Z.; Li, D.; Li, H.; Zhou, J. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour. Technol. 2015, 179, 436–443. doi:10.1016/j.biortech.2014.12.041.
  • Matsumura, Y.; Akahira-Moriya, A.; Sasaki-Mori, M. Bioremediation of bisphenol-A polluted soil by Sphingomonas bisphenolicum AO1 and the microbial community existing in the soil. Biocontrol Sci. 2015, 20, 35–42. doi:10.4265/bio.20.35.
  • Xia, S.; Jia, R.; Feng, F.; Xie, K.; Li, H.; Jing, D.; Xu, X. Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process. Bioresour. Technol. 2012, 106, 36–43. doi:10.1016/j.biortech.2011.11.112.
  • Thelusmond, J.-R.; Strathmann, T.-J.; Cupples, A.-M. The identification of carbamazepine biodegrading phylotypes and phylotypes sensitive to carbamazepine exposure in two soil microbial communities. Sci. Total Environ. 2016, 571, 1241–1252. doi:10.1016/j.scitotenv.2016.07.154.
  • Allen, M.-S.; Welch, K.-T.; Prebyl, B.-S.; Baker, D.-C.; Meyers, A.-J.; Sayler, G.-S. Analysis and glycosyl composition of the exopolysaccharide isolated from the floc-forming wastewater bacterium Thauera sp. MZ1 T. Environ. Microbiol. 2004, 6, 780–790. doi:10.1111/j.1462-2920.2004.00615.x.
  • Henriques, I.-D.-S.; Love, N.-G. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins. Water Res. 2007, 41, 4177–4185. doi:10.1016/j.watres.2007.05.001.
  • Pauwels, B.; Wille, K.; Noppe, H.; De Brabander, H.; Van de Wiele, T.; Verstraete, W.; Boon, N. 17a-ethinylestradiol cometabolism by bacteria degrading estrone, 17b-estradiol and estriol. Biodegradation 2008, 19, 683–693. doi:10.1007/s10532-007-9173-z.
  • Muller, M.; Patureau, D.; Godon, J.-J.; Delgenes, J.-P.; Hernandez-Raquet, G. Molecular and kinetic characterization of mixed cultures degrading natural and synthetic estrogens. Appl. Microbiol. Biotechnol. 2010, 85, 691–701. doi:10.1007/s00253-009-2160-z.
  • Matsumura, Y.; Hosokawa, C.; Sasaki-Mori, M.; Akahira, A.; Fukunaga, K.; Ikeuchi, T.; Oshiman, K.-I.; Tsuchido, T. Isolation and characterization of novel bisphenol-A-degrading bacteria from soils. Biocontrol Sci. 2009, 14, 161–169. doi:10.4265/bio.14.161.
  • Zhang, W.-W.; Yin, K.; Chen, L.-X. Bacteria-mediated bisphenol A degradation. Appl. Microbiol. Biotechnol. 2013, 97, 5681–5689. doi:10.1007/s00253-013-4949-z.
  • Eio, E.-J.; Kawai, M.; Tsuchiya, K.; Yamamoto, S.; Toda, T. Biodegradation of bisphenol A by bacterial consortia. Int. Biodeterior. Biodegradation. 2014, 96, 66–173. doi:10.1016/j.ibiod.2014.09.011.
  • Lobos, J.-H.; Leib, T.-K.; Su, T.-M. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium. Appl. Environ. Microbiol. 1992, 58, 1823–1831.
  • Sasaki, M.; Maki, J.; Oshiman, K.; Matsumura, Y.; Tsuchido, T. Biodegradation of bisphenol A by cells and cell lysate from Sphingomonas sp. strain AO1. Biodegradation 2005, 16, 449–459. doi:10.1007/s10532-004-5023-4.
  • Wang, Z.; Yang, Y.; Sun, W.; Xie, S.; Liu, Y. Nonylphenol biodegradation in river sediment and associated shifts in community structures of bacteria and ammonia-oxidizing microorganisms. Ecotoxicol. Environ. Saf. 2014, 106, 1–5. doi:10.1016/j.ecoenv.2014.04.019.
  • Shi, J.; Fujisawa, S.; Nakai, S.; Hosomi, M. Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Res. 2004, 38, 2322–2329. doi:10.1016/j.watres.2004.02.022.
  • Arp, D.-J.; Sayavedra-Soto, L.-A.; Hommes, N.-G. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch. Microbiol. 2002, 178, 250–255. doi:10.1007/s00203-002-0452-0.
  • Kiliç, N.-K.; Dönmez, G. Remazol Blue removal and EPS production by Pseudomonas aeruginosa and Ochrobactrum sp. Pol. J. Environ. Stud. 2012, 21, 123–128.
  • Chen, C.; Xu, X.-J.; Xie, P.; Yuan, Y.; Zhou, X.; Wang, A.-J.; Lee, D.-J.; Ren, N.-Q. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations. Chemosphere. 2017, 171, 294–301. doi:10.1016/j.chemosphere.2016.11.159.
  • Paje, M.-L.-F.; Kuhlicke, U.; Winkler, M.; Neu, T.-R. Inhibition of lotic biofilms by diclofenac. Appl. Microbiol. Biotechnol. 2002, 59, 488–492. doi:10.1007/s00253-002-1042-4.
  • Stafslien, S.; Daniels, J.; Mayo, B.; Christianson, D.; Chisholm, B.; Ekin, A.; Webster, D.; Swain, G. Combinatorial materials research applied to the development of new surface coatings IV. A high-throughput bacterial biofilm retention and retraction assay for screening fouling-release performance of coatings. Biofouling. 2007, 23, 45–54. doi:10.1080/08927010601137856.
  • Kumar, A.; Bajaj, A.; Kumar, R.-M.; Kaur, G.; Kaur, N.; Singh, N.-K.; Manickam, N.; Mayilraj, S. Taxonomic description and genome sequence of Rheinheimera mesophila sp. nov., isolated from an industrial waste site. Int. J. Syst. Evol. Microbiol. 2015, 65, 3666–3673. doi:10.1099/ijsem.0.000471.
  • Caliz, J.; Vila, X.; Marti, E.; Sierra, J.; Nordgren, J.; Lindgren, P.-E.; Baneras, L.; Montserrat, G. The microbiota of an unpolluted calcareous soil faces up chlorophenols: Evidences of resistant strains with potential for bioremediation. Chemosphere. 2011, 83, 104–116. doi:10.1016/j.chemosphere.2011.01.016.
  • Bestawy, E.-E.; Helmy, S.; Hussien, H.; Fahmy, M.; Amer, R. Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl. Water. Sci. 2013, 3, 181–192. doi:10.1007/s13201-012-0071-0.
  • Guzik, U.; Greń, I.; Wojcieszyńska, D.; Łabużek, S. Isolation and characterization of a novel strain of Stenotrophomonas maltophilia possessing various dioxygenases for monocyclic hydrocarbondegradation. Braz. J. Microbiol. 2009, 40, 285–291.
  • Nouha, K.; Yan, S.; Tyagi, R.-D.; Surampalli, R.-Y. EPS producing microorganisms from municipal wastewater activated sludge. J. Pet. Environ. Biotechnol. 2015, 7, 1.
  • LaPara, T.-M.; Klatt, C.-G.; Chen, R. Adaptations in bacterial catabolic enzyme activity and community structure in membrane-coupled bioreactors fed simple synthetic wastewater. J. Biotechnol. 2006, 121, 368–380. doi:10.1016/j.jbiotec.2005.07.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.