Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 4
187
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Oxidation of azo and anthraquinonic dyes by peroxymonosulphate activated by UV light

, , , &
Pages 393-404 | Received 05 Aug 2017, Accepted 08 Nov 2017, Published online: 27 Dec 2017

References

  • Hunger, K. Industrial Dyes: Chemistry, Properties, Applications; Weinheim, Germany: Wiley-VCH, 2007.
  • Moussavi, G.; Mahmoudi, M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J. Hazard. Mater. 2009, 168, 806–812. doi:10.1016/j.jhazmat.2009.02.097.
  • Martinez-Huitle, C. -A.; Brillas, E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl. Catal. B-Environ. 2009, 87, 105–145. doi:10.1016/j.apcatb.2008.09.017.
  • Bafana, A.; Devi, S.-S.; Chakrabarti, T. Azo dyes: Past, present and the future. Environ. Rev. 2011, 19, 350–370. doi:10.1139/a11-018.
  • Pereira, L.; Alves, M. Dyes—Environmental impact and remediation. In Environmental Protection Strategies for Sustainable Development. Malik, A., Grohmann, E., Eds.; Dordrecht, Netherlands: Springer, 2012; 111–162.
  • Holkar, C. -R.; Jadhav, A. -J.; Pinjari, D. -V.; Mahamuni, N. -M.; Pandit, A. -B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manage. 2016, 182, 351–366. doi:10.1016/j.jenvman.2016.07.090.
  • Yagub, M. -T.; Sen, T. -K.; Afroze, S.; Ang, H. -M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. doi:10.1016/j.cis.2014.04.002.
  • Tan, K. -B.; Vakili, M.; Hord, B. -A.; Poh, P. -E.; Abdullah, A. -Z.; Salamatinia, B. Adsorption of dyes by nanomaterials: Recent developments and adsorption mechanisms. Sep. Purif. Technol. 2015, 150, 229–242. doi:10.1016/j.seppur.2015.07.009.
  • Ahmad, A.; Mohd-Setapar, S. -H.; Chuong, C. -S.; Khatoon, A.; Wani, W. -A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. Rsc. Adv. 2015, 5, 30801–30818. doi:10.1039/C4RA16959J.
  • Dasgupta, J.; Sikder, J.; Chakraborty, S.; Curcio, S.; Drioli, E. Remediation of textile effluents by membrane based treatment techniques: A state of the art review. J. Environ. Manage. 2015, 147, 55–72. doi:10.1016/j.jenvman.2014.08.008.
  • Fu, J.; Kyzas, G. -Z. Wet air oxidation for the decolorization of dye wastewater: An overview of the last two decades. Chinese J. Catal. 2014, 35, 1–7. doi:10.1016/S1872-2067(12)60724-4.
  • Buthiyappan, A.; Aziz, A.-R.-A.; Daud, W. Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents. Rev. Chem. Eng. 2016, 32, 1–47. doi:10.1515/revce-2015-0034.
  • Eren, Z. Ultrasound as a basic and auxiliary process for dye remediation: A review. J. Environ. Manage. 2012, 104, 127–141. doi:10.1016/j.jenvman.2012.03.028.
  • Chang, S. -H.; Wang, K. -S.; Chao, S. -J.; Peng, T. -H.; Huang, L. -C. Degradation of azo and anthraquinone dyes by a low-cost Fe-0/air Process. J. Hazard. Mater. 2009, 166, 1127–1133. doi:10.1016/j.jhazmat.2008.12.021.
  • Raman, C. -D.; Kanmani, S. Textile dye degradation using nano zero valent iron: A review. J. Environ. Manage. 2016, 177, 341–355. doi:10.1016/j.jenvman.2016.04.034.
  • Brillas, E.; Martinez-Huitle, C. A. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl. Catal. B-Environ. 2015, 166, 603–643.
  • Mahmood, S.; Khalid, A.; Arshad, M.; Mahmood, T.; Crowley, D. E. Detoxification of azo dyes by bacterial oxidoreductase enzymes. Crit. Rev. Biotechnol. 2016, 36, 639–651.
  • Khan, R.; Bhawana, P.; Fulekar, M. -H. Microbial decolorization and degradation of synthetic dyes: A review. Rev. Environ. Sci. Bio. 2013, 12, 75–97.
  • Popli, S.; Patel, U. -D. Destruction of azo dyes by anaerobic-aerobic sequential biological treatment: A review. Int. J. Environ. Sci. Te. 2015, 12, 405–420. doi:10.1007/s13762-014-0499-x.
  • Sen, S. -K.; Raut, S.; Bandyopadhyay, P. Fungal decolouration and degradation of azo dyes: A review. Fungal Biol. Rev. 2016, 30, 112–133. doi:10.1016/j.fbr.2016.06.003.
  • Anipsitakis, G. -P.; Dionysiou, D. -D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. doi:10.1021/es035121o.
  • Hori, H.; Yamamoto, A.; Hayakawa, E.; Taniyasu, S.; Yamashita, N.; Kutsuna, S.; Kiatagawa, H.; Arakawa, R. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 2005, 39, 2383–2388. doi:10.1021/es0484754.
  • Yang, S.; Wang, P.; Yang, X.; Wei, G.; Zhang, W.; Shan, L. A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. J. Environ. Sci. 2009, 21, 1175–1180. doi:10.1016/S1001-0742(08)62399-2.
  • Anipsitakis, G. -P.; Dionysiou, D. -D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 2003, 37, 4790–4797. doi:10.1021/es0263792.
  • Pagano, M.; Volpe, A.; Mascolo, G.; Lopez, A.; Locaputo, V.; Ciannarella, R. Peroxymonosulfate-Co(II) oxidation system for the removal of the non-ionic surfactant Brij 35 from aqueous solution. Chemosphere. 2012, 86, 329–334. doi:10.1016/j.chemosphere.2011.09.010.
  • Rastogi, A.; Ai-Abed, S. R.; Dionysiou, D. -D. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl. Catal. B-Environ. 2009, 85, 171–179. doi:10.1016/j.apcatb.2008.07.010.
  • Hu, P. -D.; Long, M. -C. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B-Environ. 2016, 181, 103–117. doi:10.1016/j.apcatb.2015.07.024.
  • Ling, S. -K.; Wang, S.; Peng, Y. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate. J. Hazard. Mater. 2010, 178, 385–389. doi:10.1016/j.jhazmat.2010.01.091.
  • Yuan, R.; Ramjaun, S. -N.; Wang, Z.; Liu, J. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds. J. Hazard. Mater. 2011, 196, 173–179. doi:10.1016/j.jhazmat.2011.09.007.
  • Cai, C.; Zhang, H.; Zhong, X.; Hou, L. Ultrasound enhanced heterogeneous activation of peroxymonosulfate by a bimetallic Fe–Co/SBA-15 catalyst for the degradation of Orange II in water. J. Hazard. Mater. 2015, 283, 70–79. doi:10.1016/j.jhazmat.2014.08.053.
  • Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. doi:10.1016/j.cej.2016.10.064.
  • Wang, P.; Yang, S.; Shan, L.; Niu, R.; Shao, X. Involvements of chloride ion in decolorization of Acid Orange 7 by activated peroxydisulfate or peroxymonosulfate oxidation. J. Environ. Sci. 2011, 23, 1799–1807. doi:10.1016/S1001-0742(10)60620-1.
  • Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. J. Hazard. Mater. 2010, 179, 552–558. doi:10.1016/j.jhazmat.2010.03.039.
  • Shu, H. -Y.; Chang, M. -C.; Huang, S. -W. Decolorization and mineralization of azo dye Acid Blue 113 by the UV/oxone process and optimization of operating parameters. Desalin. Water Treat. 2016, 57, 7951–7962.
  • Huang, Y. -H.; Huang, Y. -F.; Huang, C. -I.; Chen, C. -Y. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst. J. Hazard. Mater. 2009, 170, 1110–1118. doi:10.1016/j.jhazmat.2009.05.091.
  • Kolthoff, I. -M.; Carr, E. -M. Volumetric determination of persulfate in presence of organic substances. Anal. Chem. 1953, 25, 298–301. doi:10.1021/ac60074a024.
  • Logrono, W.; Perez, M.; Urquizo, G.; Kadier, A.; Echeverria, M.; Recalde, C.; Rakhely, G. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere. 2017, 176, 378–388. doi:10.1016/j.chemosphere.2017.02.099.
  • Pillai, I.-M.-S.; Gupta, A. -K. Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: Energy consumption, mass transfer coefficient and economic analysis. J. Environ. Manage. 2017, 193, 524–531. doi:10.1016/j.jenvman.2017.02.046.
  • Starling, M.-C.-V.-M.; Castro, L.-A.-S.; Marcelino, R.-B.-P.; Leão, M.-M.-D.; Amorim, C. -C. Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources. Environ. Sci. Pollut. Res. 2017, 24, 6222–6232. doi:10.1007/s11356-016-6157-8.
  • Wu, H.; Liu, Z. -Z.; Li, A. -M.; Yang, H. Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater. Chemosphere. 2017, 174, 200–207. doi:10.1016/j.chemosphere.2017.01.120.
  • Guan, Y. -H.; Ma, J.; Li, X. -C.; Fang, J. -Y.; Chen, L. -W. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environ. Sci. Technol. 2011, 45, 9308–9314. doi:10.1021/es2017363.
  • Petrier, C.; Torres-Palma, R.; Combet, E.; Sarantakos, G.; Baup, S.; Pulgarin, C. Enhanced sonochemical degradation of bisphenol-A by bicarbonate ions. Ultrason. Sonochem. 2010, 17, 111–115. doi:10.1016/j.ultsonch.2009.05.010.
  • Romero, A.; Santos, A.; Vicente, F.; Rodriguez, S.; Lopez Lafuente, A. In situ oxidation remediation technologies: Kinetic of hydrogen peroxide decomposition on soil organic matter. J. Hazard. Mater. 2009, 170, 627–632. doi:10.1016/j.jhazmat.2009.05.041.
  • Yang, Y.; Pignatello, J-.J.; Ma, J.; Mitch, W. -A. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ. Sci. Technol. 2014, 48, 2344–2351.
  • Sorensen, M.; Frimmel, F. -H. Photochemical degradation of hydrophilic xenobiotics in the UV/H2O2-process. Influence of bicarbonate on the degradation rate of EDTA, 2-amino-1-naphthalenesulfonate, diphenyl-4-sulfonate, and 4,4 ‘-diaminostilbene-2,2 ’-disulfonate. Acta Hydroch. Hydrob. 1996, 24, 185–188.
  • Canonica, S.; Kohn, T.; Mac, M.; Real, F. -J.; Wirz, J.; Von Gunten, U. Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds. Environ. Sci. Technol. 2005, 39, 9182–9188. doi:10.1021/es051236b.
  • Vione, D.; Khanra, S.; Man, S. -C.; Maddigapu, P. -R.; Das, R.; Arsene, C.; Olariu, R. -I.; Maurino, V.; Minero, C. Inhibition vs. enhancement of the nitrate-induced phototransformation of organic substrates by the (OH)-O-center dot scavengers bicarbonate and carbonate. Water Res. 2009, 43, 4718–4728.
  • Liu, Y. -Q.; He, X. -X.; Duan, X. -D.; Fu, Y. -S.; Fatta-Kassinos, D.; Dionysiou, D. -D. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism. Water Res. 2016, 95, 195–204. doi:10.1016/j.watres.2016.03.011.
  • Busset, C.; Mazellier, P.; Sarakha, M.; De Laat, J. Photochemical generation of carbonate radicals and their reactivity with phenol. J. Photoch. Photobiol. A. 2007, 185, 127–132. doi:10.1016/j.jphotochem.2006.04.045.
  • Tercero Espinoza, L. -A.; Neamtu, M.; Frimmel, F. -H. The effect of nitrate, Fe(III) and bicarbonate on the degradation of bisphenol A by simulated solar UV-irradiation. Water Res. 2007, 41, 4479–4487. doi:10.1016/j.watres.2007.06.060.
  • Elango, T. -P.; Ramakrishnan, V.; Vancheesan, S.; Kuriacose, J. -C. Reaction of the carbonate radical with substituted anilines. P. Indian Acad. Sci. Chem. Sci. 1984, 93, 47–52.
  • Truong, G. L.; Laat, J. -D.; Legube, B. Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2. Water Res. 2004, 38, 2384–2394. doi:10.1016/j.watres.2004.01.033.
  • Vione, D.; Maurino, V.; Minero, C.; Calza, P.; Pelizzetti, E. Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution. Environ. Sci. Technol. 2005, 39, 5066–5075. doi:10.1021/es0480567.
  • Wang, Y. -R.; Chu, W. Degradation of a xanthene dye by Fe(II)-mediated activation of oxone process. J. Hazard. Mater. 2011, 186, 1455–1461. doi:10.1016/j.jhazmat.2010.12.033.
  • Li, K.; Stefan, M. -I.; Crittenden, J. -C. Trichloroethene degradation by UV/H2O2 advanced oxidation process: Product study and kinetic modeling. Environ. Sci. Technol. 2007, 41, 1696–1703. doi:10.1021/es0607638.
  • Matykiewiczova, N.; Kurkova, R.; Klanova, J.; Klan, P. Photochemically induced nitration and hydroxylation of organic aromatic compounds in the presence of nitrate or nitrite in ice. J. Photoch. Photobiol. A. 2007, 187, 24–32. doi:10.1016/j.jphotochem.2006.09.008.
  • Shankar, M. -V.; Nelieu, S.; Kerhoas, L.; Einhorn, J. Photo-induced degradation of diuron in aqueous solution by nitrites and nitrates: Kinetics and pathways. Chemosphere. 2007, 66, 767–774. doi:10.1016/j.chemosphere.2006.07.044.
  • Zepp, R. -G.; Hoigne, J.; Bader, H. Nitrate-induced photooxidation of trace organic chemicals in water. Environ. Sci. Technol. 1987, 21, 443–450. doi:10.1021/es00159a004.
  • Neta, P.; Huie, R. -E. Rate constants for reactions of nitrogen oxide (NO3) radicals in aqueous solutions. J. Phys. Chem. 1986, 90, 4644–4648. doi:10.1021/j100410a035.
  • Yang, J.-C.-E.; Yuan, B.; Cui, H. -J.; Wang, S.; Fu, M. -L. Modulating oxone-MnOx/silica catalytic systems towards ibuprofen degradation: Insights into system effects, reaction kinetics and mechanisms. Appl. Catal. B-Environ. 2017, 205, 327–339. doi:10.1016/j.apcatb.2016.12.046.
  • Chen, X. -Y.; Chen, J. -W.; Qiao, X. -L.; Wang, D. -G.; Cai, X. -Y. Performance of nano-Co3O4/peroxymonosulfate system: Kinetics and mechanism study using Acid Orange 7 as a model compound. Appl. Catal. B-Environ. 2008, 80, 116–121. doi:10.1016/j.apcatb.2007.11.009.
  • Fang, C.; Xiao, D.; Liu, W.; Lou, X.; Zhou, J.; Wang, Z.; Liu, J. Enhanced AOX accumulation and aquatic toxicity during 2,4,6-trichlorophenol degradation in a Co(II)/peroxymonosulfate/Cl−system. Chemosphere. 2016, 144, 2415–2420. doi:10.1016/j.chemosphere.2015.11.030.
  • Aleboyeh, A.; Olya, M. -E.; Aleboyeh, H. Electrical energy determination for an azo dye decolorization and mineralization by UV/H2O2 advanced oxidation process. Chem. Eng. J. 2008, 137, 518–524. doi:10.1016/j.cej.2007.05.016.
  • Saien, J.; Ojaghloo, Z.; Soleymani, A. -R.; Rasoulifard, M. -H. Homogeneous and heterogeneous AOPs for rapid degradation of Triton X-100 in aqueous media via UV light, nano titania hydrogen peroxide and potassium persulfate. Chem. Eng. J. 2011, 167, 172–182. doi:10.1016/j.cej.2010.12.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.