Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 4
277
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Dissipation of antimicrobial resistance genes in compost originating from cattle manure after direct oral administration or post-excretion fortification of antimicrobials

, , , , , , , , , & show all
Pages 373-384 | Received 18 Aug 2017, Accepted 06 Nov 2017, Published online: 07 Dec 2017

References

  • Ji, X.; Shen, Q.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.; Wu, M. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agriculture soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 2012, 235–236, 178–185. doi:10.1016/j.jhazmat.2012.07.040.
  • Public Health Agency of Canada. CIPARS 2008—Annual Report; section two—antimicrobial use. http://www.phac-aspc.gc.ca/cipars-picra/2008/4-eng.php (accessed 16 January 2017).
  • Gustafson, R.-H.; Bowen, R.-E. A review: Antibiotic use in animal agriculture. J. Appl. Microbiol. 1997, 83, 531–541. doi:10.1046/j.1365-2672.1997.00280.x.
  • Sarmah, A.-K.; Meyer, M.-T.; Boxall, A.-B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 2006, 65, 725–759. doi:10.1016/j.chemosphere.2006.03.026.
  • Kim, K.; Owens, G.; Kwon, S.; So, K.; Lee, D.; Ok, Y.-S. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut. 2011, 214, 163–174. doi:10.1007/s11270-010-0412-2.
  • Alexander, T.-W.; Yanke, J.-L.; Reuter, T.; Topp, E.; Read, R.-R.; Selinger, B.-L.; McAllister, T.-A. Longitudinal characterization of antimicrobial resistance genes in feces shed from cattle fed different subtherapeutic antibiotics. BMC Microbiol. 2011, 11, 19. doi:10.1186/1471-2180-11-19.
  • Cessna, A.-J.; Larney, F.-J.; Kuchta, S.-L.; Hao, X.; Entz, T.; McAllister, T.-A. Veterinary antimicrobials in feedlot manure: Dissipation during composting and effects on composting process. J. Environ. Qual. 2011, 40, 188–198. doi:10.2134/jeq2010.0079.
  • Sura, S.; Degenhardt, D.; Cessna, A.-J.; Larney, F.-J.; Olson, A.-F.; McAllister, T.-A. Dissipation of three veterinary antimicrobials in beef cattle feedlot manure stockpiled over winter. J. Environ. Qual. 2014, 43, 1061–1070. doi:10.2134/jeq2013.11.0455.
  • Sura, S.; Degenhardt, D.; Cessna, A.-J.; Larney, F.-J.; Olson, A.-F.; McAllister, T.-A. Transport of three veterinary antimicrobials from feedlot pens via simulated rainfall runoff. Sci. Total Environ. 2015, 521–522, 191–199. doi:10.1016/j.scitotenv.2015.03.080.
  • Zhao, L.; Dong, Y.-H.; Wang, H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 2010, 408, 1069–1075. doi:10.1016/j.scitotenv.2009.11.014.
  • Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 2011, 14, 236–243. doi:10.1016/j.mib.2011.04.009.
  • Micallef, S.-A.; Goldstein, R.-E.-R.; George, A.; Ewing, L.; Tall, B.-D.; Boyer, M.-S.; Joseph, S.-W.; Sapkota; A.-R. Diversity, distribution and antibiotic resistance of Enterococcus spp. recovered from tomatoes, leaves, water and soil on U.S. Mid-Atlantic farms. Food Microbiol. 2013, 36, 465–474. doi:10.1016/j.fm.2013.04.016.
  • Létourneau, V.; Nehmé, B.; Mériaux, A.; Massé, D.; Cormier, Y.; Duchaine, C. Human pathogens and tetracycline-resistance bacteria in bioaerosols of swine confinement buildings and in nasal flora of hog producers. Int. J. Hyg. Environ. Health. 2010, 213, 444–449. doi:10.1016/j.ijheh.2010.09.008.
  • Koike, S.; Krapac, I.-G.; Oliver, H.-D.; Yannarell, A.-C.; Chee-Sanford, J.-C.; Aminov, R.-I.; Mackie, R.-I. Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl. Environ. Microbiol. 2007, 73, 4813–4823. doi:10.1128/AEM.00665-07.
  • Zhou, Z.; Raskin, L.; Zilles, J.-L. Effects of swine manure on macrolide, lincosamide, and streptogramin B antimicrobial resistance in soils. Appl. Environ. Microbiol. 2010, 76, 2218–2224. doi:10.1128/AEM.02183-09.
  • Berman, H.-F.; Riley, L.-W. Identification of novel antimicrobial resistance genes from microbiota on retail spinach. BMC Microbiol. 2013, 13, 272. doi:10.1186/1471-2180-13-272.
  • Sharma, R.; Larney, F.-J.; Chen, J.; Yanke, L.-J.; Morrison, M.; Topp, E.; McAllister, T.-A.; Yu, Z. Selected antimicrobial resistance during composting of manure from cattle administered sub-therapeutic antimicrobials. J. Environ. Qual. 2009, 38, 567–575. doi:10.2134/jeq2007.0638.
  • Erickson, M.-C.; Liao, J.; Ma, L.; Jiang, X.-P.; Doyle, M.-P. Inactivation of Salmonella spp. in cow manure composts formulated to different initial C:N ratios. Bioresour. Technol. 2009, 100, 5898–5903. doi:10.1016/j.biortech.2009.06.083.
  • Xu, W.; Reuter, T.; Inglis, G.-D.; Larney, F.-J.; Alexander, T.-W.; Guan, J.; Stanford, K.; Xu, Y.; McAllister, T.-A. A biosecure composting system for disposal of cattle carcasses and manure following infectious disease outbreak. J. Environ. Qual. 2009, 38, 437–450. doi:10.2134/jeq2008.0168.
  • Ryckeboer, J.; Mergaert, J.; Vaes, K.; Klammer, S.; Clercq, D.De.; Coosemans, J.; Insam, H.; Swings, J. A survey of bacteria and fungi occurring during composting and self-heating processes. Ann. Microbiol. 2003, 53, 349–410.
  • Selvam, A.; Xu, D.; Zhao, Z.; Wong, J.-W.-C. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresour. Technol. 2012, 126, 383–390. doi:10.1016/j.biortech.2012.03.045.
  • Selvam, A.; Zhao, Z.; Wong, J.W.C. Composting of swine manure spiked with sulfadiazine, chlortetracycline and ciprofloxacin. Bioresour. Technol. 2012, 126, 412–417. doi:10.1016/j.biortech.2011.12.073.
  • Dolliver, H.; Gupta, S.; Noll, S. Antibiotic degradation during manure composting. J. Environ. Qual. 2008, 37, 1245–1253. doi:10.2134/jeq2007.0399.
  • Kakimoto, T.; Osawa, T.; Funamizu, N. Antibiotic effect of amoxicillin on the feces composting process and reactivation of bacteria by intermittent feeding of feces. Bioresour. Technol. 2007, 98, 3555–3560. doi:10.1016/j.biortech.2006.11.029.
  • Arikan, O.-A.; Sikora, L.-J.; Mulbry, W.; Khan, S.-U.; Foster, G.-D. Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves. Bioresour. Technol. 2007, 98, 167–176. doi:10.1016/j.biortech.2005.10.041.
  • Ramaswamy, J.; Prasher, S.-O.; Patel, R.-M.; Hussain, S.-A.; Barrington, S.-F. The effect of composting on the degradation of a veterinary pharmaceutical. Bioresour. Technol. 2010, 101, 2294–2299. doi:10.1016/j.biortech.2009.10.089.
  • Kim, K.; Owens, G.; Ok, Y.S.; Park, W.; Lee, D.-B.; Kwon, S. Decline in extractable antibiotics in manure-based composts during composting. Waste Manage. 2012, 32, 110–116. doi:10.1016/j.wasman.2011.07.026.
  • Amarakoon, I.-D.; Zvomuya, F.; Sura, S.; Larney, F.-J.; Cessna, A.-J.; Xu, S.; McAllister, T.-A. Dissipation of antimicrobials in feedlot manure compost after oral administration versus fortification after excretion. J. Environ. Qual. 2016, 45, 503–510. doi:10.2134/jeq2015.07.0408.
  • Xu, S.; McAllister, T.-A.; Leonard, J.-J.; Clark, O.-G.; Belosevic, M. Assessment of the microbial communities involved in the decomposition of specified risk material using a passively aerated laboratory-scale composter. Compost Sci. Util. 2010, 18, 255–265. doi:10.1080/1065657X.2010.10736964.
  • Xu, S.; Sura, S.; Zaheer, R.; Wang, G.; Smith, A.; Cook, S.; Olson, A.-F.; Cessna, A.-J.; Larney, F.-J.; McAllister, T.-A. Dissipation of antimicrobial resistance determinants in composted and stockpiled beef cattle feedlot manure. J. Environ. Qual. 2016, 45, 528–536. doi:10.2134/jeq2015.03.0146.
  • Chen, J.; Yu, Z.; Michel Jr., F.-C.; Wittum, T.; Morrison, M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Appl. Environ. Microbiol. 2007, 73, 4407–4416. doi:10.1128/AEM.02799-06.
  • CCME. Guidelines for compost quality. www.ccme.ca/ourwork/waste.html?category_id=132 (accessed 29 March 2017).
  • USEPA. Chapter 7 of EPA's decision-maker's guide to solid waste management. https://nepis.epa.gov/Exe/ (accessed 29 March 2017).
  • Ray, P.; Chen, C.; Knowlton, K.-F.; Pruden, A.; Xia, K. Fate and effect of antibiotics in beef and dairy manure during static and turned composting. J. Environ. Qual. 2017, 46, 45–54. doi:10.2134/jeq2016.07.0269.
  • Xu, S.; Reuter, T.; Gilroyed, B.-H.; Mitchell, G.; Price, L.-M.; Dudas, S.; Braithwaite, S.-L.; Graham, C.; Czub, S.; Leonard, J.-J.; Belosevic, M.; Balachandran, A.; Neumann, N.-F.; McAllister, T.-A. Biodegradation of prions in compost. Environ. Sci. Technol. 2014, 48, 6909–6918. doi:10.1021/es500916v.
  • Xu, S.; Harvey, A.; Barbieri, R.; Reuter, T.; Stanford, K.; Amoako, K.-K.; Selinger, L.-B.; McAllister, T.-A. Inactivation of Bacillus anthracis spores during laboratory-scale composting of feedlot cattle manure. Front. Microbiol. 2016, 7, 806. doi:10.3389/fmicb.2016.00806.
  • Arikan, O.-A.; Mulbry, W.; Rice, C. Management of antibiotic residues from agricultural sources: Use of composting to reduce chlortetracycline residues in beef manure from treated animals. J. Hazard. Mater. 2009, 164, 483–489. doi:10.1016/j.jhazmat.2008.08.019.
  • Xu, S.; Reuter, T.; Gilroyed, B.H.; Tymensen, L.; Hao, Y.; Hao, X.; Belosevic, M.; Leonard, J.-J.; McAllister, T.-A. Microbial communities and greenhouse gas emissions associated with the biodegradation of specified risk material in compost. Waste Manag. 2013, 33, 1372–1380. doi:10.1016/j.wasman.2013.01.036.
  • Roberts, M.-C. Update of acquired tetracycline resistance genes. FEMS Microbiol. Lett. 2005, 245, 195–203. doi:10.1016/j.femsle.2005.02.034.
  • Alexander, T.-W.; Yanke, L.-J.; Topp, E.; Olson, M.-E.; Read, R.-R.; Morck, D.-W.; McAllister, T.-A. Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle. Appl. Environ. Microbiol. 2008, 74, 4405–4416. doi:10.1128/AEM.00489-08.
  • Chung, W.-O.; Young, K.; Leng, Z.-T.; Roberts, M.-C. Mobile elements carrying ermF and tetQ genes in Gram-positive and Gram-negative bacteria. J. Antimicrob. Chemother. 1999, 44, 329–335. doi:10.1093/jac/44.3.329.
  • Roberts, M.-C. Resistance to tetracycline, macrolide-lincosamide-streptogramin, trimethoprim, and sulfonamide drug classes. Mol. Biotechnol. 2002, 20, 261–283. doi:10.1385/MB:20:3:261.
  • Larney, F.-J.; Olson, A.-F.; Carcamo, A.-A.; Chang, C. Physical changes during active and passive composting of beef feedlot manure in winter and summer. Bioresour. Technol. 2000, 75, 139–148. doi:10.1016/S0960-8524(00)00040-7.
  • Stanford, K.; Hao, X.; Xu, S.; McAllister, T.-A.; Larney, F.; Leonard, J.-J. Effects of age of cattle, turning technology and compost environment on disappearance of bone from mortality compost. Bioresour. Technol. 2009, 100, 4417–4422. doi:10.1016/j.biortech.2008.11.061.
  • Storteboom, H.-N.; Kim, S.; Doesken, K.-C.; Carlson, K.-H.; Davis, J.-G.; Pruden, A. Response of antibiotics and resistance genes to high-intensity and low-intensity manure management. J. Environ. Qual. 2007, 36, 1695–1703. doi:10.2134/jeq2007.0006.
  • Chen, J.; Fluharty, F.-L.; St-Pierre, N.; Morrison, M.; Yu, Z. Technical note: Occurrence in faecal microbiota of genes conferring resistance to both macrolide-lincosamide-streptogramin B and tetracyclines concomitant with feeding of beef cattle with tyrosine. J. Anim. Sci. 2008, 86, 2385–2391. doi:10.2527/jas.2007-0705.
  • Heuer, H.; Focks, A.; Lamshöft, M.; Smalla, K.; Matthies, M.; Spiteller, M. Fate of sulfadiazine administered to pigs and its quantitative effect on the dynamics of bacteria resistance genes in manure and manured soil. Soil Biol. Biochem. 2008, 40, 1892–1900. doi:10.1016/j.soilbio.2008.03.014.
  • Knapp, C.-W.; Engemann, C.-A.; Hanson, M.-L.; Keen, P.-L.; Hall, K.-J.; Graham, D.-W. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level of oxytetracycline exposures. Environ. Sci. Technol. 2008, 42, 5348–5353. doi:10.1021/es703199g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.